Data Sheet

FEATURES

Quad 14-bit 250 MSPS ADC SFDR = $\mathbf{8 3} \mathbf{~ d B c}$ at $\mathbf{8 7} \mathbf{~ M H z}$ input
Dual 14-bit 500 MSPS DAC SFDR = $\mathbf{7 5} \mathbf{~ d B c}$ at $\mathbf{2 0 ~ M H z ~ o u t p u t ~}$
On-chip PLL clock synthesizer
Low power
1536 mW, 1 GHz master clock, on-chip synthesizer
500 MHz double data rate (DDR)
LVDS interfaces for DACs and ADCs
Small $12 \mathrm{~mm} \times 12 \mathrm{~mm}$ lead-free BGA package

APPLICATIONS

Point to point microwave backhaul radios Wireless repeaters

GENERAL DESCRIPTION

The AD9993 is a mixed-signal front-end (MxFE^{\bullet}) device that integrates four 14-bit ADCs and two 14-bit DACs. Figure 1 shows the block diagram of the MxFE. The MxFE is programmable using registers accessed via a serial peripheral interface (SPI). ADC and DAC datapaths include FIFO buffers to absorb phase differences between LVDS lane clocks and the data converter sampling clocks.

The MxFE DACs are part of the Analog Devices, Inc., high speed CMOS DAC core family. These DACs are designed to be used in wide bandwidth communication system transmitter (Tx) signal chains.

The MxFE ADCs are multistage pipelined CMOS ADC cores designed for use in communications receivers.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 3
Specifications 4
DC Specifications 4
AC Specifications 5
Digital Specifications 5
Absolute Maximum Ratings 7
Thermal Resistance 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 11
Receiver ADC Performance 11
Transmitter DAC Performance 13
Terminology 15
Theory of Operation 16
Product Description 16
SPI Port 16
SPI Configuration Programming 17
Register Update Transfer Method 17
ADC Register Update Indexing 17
ADCs 17
ADC Architecture 17
ADC Section Programming 17
Analog Input Considerations 17
DACs 18
DAC Transfer Function 18
DAC Output Compliance Voltage Range and AC Performance 18
DAC Voltage Reference 19
DAC Gain Setting 19
DAC Datapath Format Selection 19
DAC Test Tone Generator DDS 19
Clocking 20
On-Chip PLL Clock Multiplier 20
Selecting Clocking Options 21
ADC Datapath and DAC Datapath FIFOs 21
LVDS Interfaces 21
LVDS Interface Timing 22
LVDS Lane Testing Using PRBS 23
Power Mode Programming. 23
Interrupt Request Operation 23
Temperature Sensor 23
Start-Up Register Sequences 25
Power-Up Routine When Using the On-Chip Clock Synthesizer 25
Power-Up Routine When Using External Clock 25
Applications Information 27
Direct Conversion Radio Application 27
Register Map 28
Register Descriptions 30
SPI Configuration Register 30
Chip ID Register 30
Chip Grade Register 31
Device Index Register 31
Power Mode Control Register 32
Align ADC LVDS Clocks, ADC FIFO, DAC FIFO Register 32Strobe Lane Control Register.33
Output Mode Register 33
LVDS Tx Control Register 34
$V_{\text {ref }}$ Control Register 34
PRBS Generator Control Register. 35
8-Bit Seed MSB of PRBS Generator for Lane 0 Register 35
8-Bit Seed MSB of PRBS Generator for Lane 1 Register 36
8-Bit Seed MSB of PRBS Generator for Lane 2 Register 36
8-Bit Seed MSB of PRBS Generator for Lane 3 Register 36
Synthesizer Status Register 37
Loop Filter Control Signals Register. 37
Loop Filter Control Signals Register 38
Loop Filter Control Signals Register 38
Integer Value of Synthesizer Divider Register 39
Synthesizer Control Register 39
Clock Generator Control Register 39
CLKGEN Control Register 40
DAC LVDS Rx Control Register 40
DAC LVDS Current Bias Control Register. 41
DAC Cores Control Register 42
DAC Datapath Format Control Register 42
DAC IQ Calibration Control Register 43
DAC IQ Calibration Status Register 43
DAC Rx FIFO Status 1 Register 43
PRBS Detector Control Register 44
PRBS Detector Error Count 0 for DAC A Register 44
PRBS Detector Error Count 1 for DAC A Register 44
PRBS Detector Error Count 2 for DAC A Register 45
PRBS Detector Error Count 3 for DAC A Register 45
PRBS Detector Error Count 4 for DAC A Register 45
PRBS Detector Error Count 5 for DAC A Register 46
PRBS Detector Error Count 6 for DAC A Register 46
PRBS Detector Error Count 0 for DAC B Register 46
PRBS Detector Error Count 1 for DAC B Register 47
PRBS Detector Error Count 2 for DAC B Register 47
PRBS Detector Error Count 3 for DAC B Register 47
PRBS Detector Error Count 4 for DAC B Register 48
PRBS Detector Error Count 5 for DAC B Register 48
REVISION HISTORY
5/14—Rev. 0 to Rev. A
Changes to Ordering Guide 56
5/14—Revision 0: Initial Version

AD9993

SPECIFICATIONS

DC SPECIFICATIONS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, ~ \mathrm{AVDD} 33=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{AVDD}=1.8 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Tx DAC RESOLUTION			14		Bits
Tx DAC OUTPUT CHARACTERISTICS Offset Error Gain Error Full-Scale Output Current (loutrs) Output Compliance Voltage Range Output Compliance Voltage Range Output Resistance	CML_A, CML_B connected to AVSS, setting of DAC_VCM_VREF_BIT[2:0] following reset CML_A, CML_B connected to a bypass capacitor, DAC_VCM_VREF_BIT[2:0] set to 010	$\begin{aligned} & -0.5 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 2.0 \\ & 20.0 \end{aligned}$ 10	$\begin{aligned} & +0.5 \\ & 1.0 \end{aligned}$	\% FSR \% FSR mA V V $\mathrm{M} \Omega$
Tx DAC TEMPERATURE DRIFT Gain Reference Voltage (VREF_DAC)	Gain using on-chip VREF_DAC On-chip VREF_DAC		$\begin{aligned} & \pm 85 \\ & \pm 215 \end{aligned}$		ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
REFERENCE (VREF_DAC) Internal Reference Voltage		0.95	1.0	1.05	V
Rx ADC RESOLUTION			14		Bits
Rx ADC CHARACTERISTICS Gain Error Peak-to-Peak Differential Input Voltage Range Input Capacitance	Setting of VREF_FS_ADJ[4:0] at reset		$\begin{aligned} & \pm 1.0 \\ & 1.75 \\ & 2.5 \end{aligned}$		\% FSR V p-p pF
Rx ADC FULL-SCALE $\mathrm{V}_{\text {REF }}$ ADJUSTMENT		1.383	1.75	2.087	V
COMMON-MODE VOLTAGE REFERENCE (A_CML, B_CML, C_CML, D_CML) ADC Common-Mode Voltage Output	ADC inputs are not self biased	0.84	0.9	0.96	V
ANALOG SUPPLY VOLTAGES AVDD33 AVDD		$\begin{aligned} & 3.14 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 1.89 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
DIGITAL SUPPLY VOLTAGES DVDD		1.62	1.8	1.98	V
POWER CONSUMPTION Single Tone Input, Single Tone Output AVDD33 AVDD DVDD Power-Down Mode			$\begin{aligned} & 1536 \\ & 55 \\ & 65 \\ & 210 \\ & 10.0 \end{aligned}$		mW mA mA mA mA
OPERATING RANGE		-40	+25	+85	${ }^{\circ} \mathrm{C}$

AC SPECIFICATIONS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \operatorname{AVDD33}=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DAC}$ sampling rate $=500 \mathrm{MSPS}$ and ADC sampling rate $=250$ MSPS, unless otherwise specified.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DAC OUTPUT					
Spurious-Free Dynamic Range (SFDR)	$\mathrm{fout}^{\text {o }}=20 \mathrm{MHz}$		75		dBc
Two Tone Intermodulation Distortion (IMD3)	$\mathrm{fout}=80 \mathrm{MHz}$		65		dBc
Noise Spectral Density (NSD), Single Tone	$\mathrm{f}_{\text {out }}=80 \mathrm{MHz}$		-160		$\mathrm{dBm} / \mathrm{Hz}$
256-QAM Adjacent Channel Power (ACP)	$\mathrm{fcENTER}^{=} 50 \mathrm{MHz}$, single carrier, 3.375 MHz offset frequency		76		dBc
ADC INPUT					
Signal to Noise Ratio (SNR) $\mathrm{fin}_{\mathrm{N}}=87 \mathrm{MHz}$	Measured with -1.0 dBFS sine wave input		70		dBc
Spurious-Free Dynamic Range (SFDR)	Measured with -1.0 dBFS sine wave input				
$\mathrm{fin}_{\text {IN }}=10 \mathrm{MHz}$			86		dBC
$\mathrm{fiN}^{\text {a }}=87 \mathrm{MHz}$			83		dBc
Two-Tone IMD3	$\mathrm{fl}_{\mathrm{IN} 1}=89 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=92 \mathrm{MHz}, \mathrm{A}_{\mathrm{IN}}=-12 \mathrm{dBFS}$		90		dBc
Full Power Bandwidth	Bandwidth of operation in which proper ADC performance can be achieved		1000		MHz

DIGITAL SPECIFICATIONS

$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}, \operatorname{AVDD} 33=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{AVDD}=1.8 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CMOS INPUT LOGIC LEVEL Input Vin Logic High Input Vin Logic Low			$\begin{aligned} & 1.8 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMOS OUTPUT LOGIC LEVEL Output Vout Logic High Output Vout Logic Low		1.2		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ADC AND DAC LVDS DATA INTERFACES ADC LVDS Transmitter Outputs DCO_P/DCO_N to Data Skew (tskew) Output Voltage High, V ${ }_{\text {он, }}$ Single Ended Output Voltage Low, VoL, Single Ended Output Differential Voltage Output Offset Voltage DAC LVDS Receiver Inputs Input Voltage Range, Single Ended Input Differential Threshold Input Differential Hysteresis Receiver Differential Input Impedance	Data to DDR DCO_P/DCO_N transition delay Applies to output voltage, positive and negative, Voutp and Voutn Applies to $\mathrm{V}_{\text {outp }}$ and $\mathrm{V}_{\text {outn }}$ Specifications apply to DAC data inputs and DCI_P/DCI_N Applies to input voltage, positive and negative, $\mathrm{V}_{\mathrm{INP}}$ and Vinn	350 825 -100 85	1375 1025 200 1200 25	$\begin{array}{r} 1575 \\ +100 \\ 115 \end{array}$	ps mV Ω

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUT (CLKP, CLKN) Differential Peak to Peak Voltage Common Mode Voltage Master Clock Frequency		200	$\begin{aligned} & 350 \\ & 1.2 \end{aligned}$	1000	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{MHz} \end{aligned}$
REFCLK Input (REFCLK) Input Vin Logic High Input Vin Logic Low REFCLK Frequency			$\begin{aligned} & 1.8 \\ & 0.0 \\ & 31.25 \text { or } \\ & 62.5 \end{aligned}$		V V MHz
SERIAL PERIPHERAL INTERFACE (SPI) SPI_SCLK Frequency SPI_SCLK Pulse Width High SPI_SCLK Pulse Width Low Setup Time, SPI_SDI to SPI_SCLK Rising Edge Hold Time, SPI_SCLK Rising Edge to SPI_SDI Setup Time, $\overline{\text { SPI_CS }}$ to SPI_SCLK Rising Edge Hold Time, SPI_SCLK Rising Edge to $\overline{S P I _C S}$ Data Valid, SPI_SCLK Falling Edge to SPI_SDO		10 10 2 2 2 2 2		25	MHz ns ns ns ns ns ns ns

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
AVSS to DVSS	-0.3 V to +0.3 V
AVDD33 to AVSS, DVSS	-0.3 V to +3.9 V
AVDD to AVSS, DVSS	-0.3 V to +2.2 V
DVDD to DVSS, AVSS	-0.3 V to +2.2 V
CP, A_VINP, A_VINN, B_VINP, B_VINN, C_VINP, C_VINN, D_VINP, D_VINN, IBIAS_TEST to AVSS	-0.3 V to AVDD +0.3 V
VREF_DAC, FSAJ_A, FSAJ_B, CML_A, CML_B, A_CML, B_CML, B_CML, D_CML to AVSS	-0.3 V to AVDD +0.3 V
IOUTA_P, IOUTA_N, IOUTB_P, IOUTB_N to AVSS	-0.3 V to AVDD +0.3 V
CLKP, CLKN, REFCLK to AVSS	-0.3 V to AVDD +0.3 V
PDWN, $\overline{\mathrm{ALERT}}, \overline{\mathrm{RST}}, \mathrm{MODE}, \mathrm{SPI}$ _SCLK, $\overline{\text { SPI_CS, }}$ SPI_SDI, SPI_SDO to DVSS	-0.3 V to DVDD +0.3 V
LVDS Data Inputs to DVSS	-0.3 V to DVDD +0.3 V
LVDS Data Outputs to DVSS	-0.3 V to DVDD +0.3 V
STROBE_P, STROBE_N to DVSS	-0.3 V to DVDD +0.3 V
DCI_N, DCI_P, DCO_N, DCO_P	-0.3 V to DVDD +0.3 V
Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 5. Thermal Resistances and Characterization Parameters

Package Type	$\boldsymbol{\theta}_{\text {ЈА }}$	$\boldsymbol{\theta}_{\boldsymbol{\jmath в}}$	$\boldsymbol{\theta}_{\boldsymbol{\jmath}}$	$\boldsymbol{\psi}_{\boldsymbol{\jmath}}$	$\boldsymbol{\psi}_{\text {Јв }}$	Unit
196-Ball CSP_BGA	27.0	15.4	5.38	0.11	15.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	AVSS	CLKP	AVSS	D_VINP	C_CML	C_VINP	AVSS	AVSS	B_VINP	B_CML	A_VINP	AVSS	IBIAS_ TEST	AVSS
B	CLKN	REFCLK	AvSS	D_VINN	D_CML	C_VINN	AVSS	AVSS	B_VINN	A_CML	A_VINN	AVSS	IOUTA_N	IOUTA_P
C	AVSS	AVDD33	AVDD33											
D	LDO15	CP	AVSS	IOUTB_N	IOUTB_P									
E	AVDD													
F	PDWN	$\overline{\text { ALERT }}$	$\overline{\mathrm{RST}}$	mode	AVDD33	AVSS	AvSs	AVSS	AVSS	Avss	AVSS	VREF_DAC	FSAJ_B	FSAJ_A
G	SPI_SCLK	$\overline{\text { SPI_CS }}$	SPI_SDI	SPI_SDO	DVDD	AVSS	AVSS	AVSS	AVSS	AVSS	AVSS	AVDD	CML_B	CML_A
H	Dvss													
J	DVDD													
K	DIN6B_N	DIN4B_N	DIN1B_N	DOUT3D_P	DOUT3D_N	DOUT3C_P	DCO_N	DCO_P	DOUT3B_P	DOUT3A_N	DOUT3A_P	DIN1A_N	DIN4A_N	DIN6A_N
L	DIN6B_P	DIN4B_P	DIN1B_P	DOUT1D_N	DOUT2D_N	DOUT1C_N	DOUT3C_N	DOUT3B_N	DOUT1B_N	DOUT2A_N	DOUT1A_N	DIN1A_P	DIN4A_P	DIN6A_P
M	DIN5B_N	DIN3B_N	DIN3B_P	DOUT1D_P	DOUT2D_P	DOUT1C_P	Strobe_N	StRobe_P	DOUT1B_P	DOUT2A_P	DOUT1A_P	DIN3A_N	DIN3A_P	DIN5A_N
N	DIN5B_P	DIN2B_N	DINOB_N	DOUTOD_N	DOUTOC_N	DOUT2C_N	DVSS	DVSS	DOUT2B_N	DOUTOB_N	DOUT0A_N	DINOA_N	DIN2A_N	DIN5A_P
P	Dvss	DIN2B_P	DINOB_P	DOUTOD_P	DOUTOC_P	DOUT2C_P	DCI_N	DCI_P	DOUT2B_P	DOUTOB_P	DOUTOA_P	DINOA_P	DIN2A_P	DVSS

Figure 2. Pin Configuration
Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
A1, A3, A7, A8, A12, A14, B3, B7, B8, B12, C1, C2,	AVSS	Analog Ground.
C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, D3, D4,		
D5, D6, D7, D8, D9, D10, D11, D12, F6, F7, F8, F9,		
F10, F11, G6, G7, G8, G9, G10, G11		
A2	CLKP	External Master Clock Input Positive.
A4	D_VINP	ADC D Input Voltage Positive.
A5	C_CML	Common-Mode Level Bias Voltage Output ADC C.
A6	C_VINP	ADC C Input Voltage Positive.
A9	B_VINP	ADC B Voltage Input Positive.
A10	B_CML	Common-Mode Level Bias Voltage Output for ADC B.
Rev. A \mid Page 8 of 56		

Pin No.	Mnemonic	Description
A11	A_VINP	ADC A Voltage Input Positive.
A13	IBIAS_TEST	Test. Connect to ground.
B1	CLKN	External Master Clock Input Negative
B2	REFCLK	On-Chip PLL Synthesizer Reference Clock Input.
B4	D_VINN	ADC D Input Voltage Negative.
B5	D_CML	Common-Mode Level Bias Voltage Output ADC D.
B6	C_VINN	ADC C Input Voltage Negative.
B9	B_VINN	ADC B Voltage Input Negative.
B10	A_CML	Common-Mode Level Bias Voltage Output for ADC A.
B11	A_VINN	ADC A Voltage Input Negative.
B13	IOUTA_N	DAC A Output Current Negative.
B14	IOUTA_P	DAC A Output Current Positive.
C13, C14, F5	AVDD33	3.3 V Analog Power Supply.
D1	LDO15	On-Chip Regulator Output. Bypass with $4.7 \mu \mathrm{~F}$ capacitor to ground.
D2	CP	Connection for On-Chip PLL Optional External Portion of Loop Filter.
D13	IOUTB_N	DAC B Output Current Negative.
D14	IOUTB_P	DAC B Output Current Positive.
E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, G12	AVDD	1.8 V Analog Power Supply.
F1	PDWN	Power-Down. Set to 1 to place the device in low power mode.
F2	$\overline{\text { ALERT }}$	Active Low Alarm Indicator Output, Open Drain.
F3	$\overline{\mathrm{RST}}$	Reset Input, Active Low.
F4	MODE	Connect to ground.
F12	VREF_DAC	DAC A and DAC B Reference Voltage Input/Output.
F13	FSAJ_B	DAC B Full-Scale Current Output Adjust.
F14	FSAJ_A	DAC A Full-Scale Current Output Adjust.
G1	SPI_SCLK	SPI Clock.
G2	$\overline{\text { SPI_CS }}$	SPI Chip Select, Active Low.
G3	SPI_SDI	SPI Serial Data Input.
G4	SPI_SDO	SPI Serial Data Output.
$\begin{aligned} & \text { G5, J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13, } \\ & \text { J14 } \end{aligned}$	DVDD	1.8V Digital Supply.
G13	CML_B	DAC B Common-Mode Control. Connect to ground for DAC bias $<0.5 \mathrm{~V}$. Connect a $0.1 \mu \mathrm{~F}$ capacitor between CML_B and ground for other DAC bias values $\geq 0.5 \mathrm{~V}$.
G14	CML_A	DAC A Common-Mode Control. Connect to ground for DAC bias $<0.5 \mathrm{~V}$. Connect a $0.1 \mu \mathrm{~F}$ capacitor between CML_A and ground for other DAC bias values $\geq 0.5 \mathrm{~V}$.
H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, N7, N8, P1, P14	DVSS	Digital Ground.
K1	DIN6B_N	DAC B Data Input Lane 6 Negative.
K2	DIN4B_N	DAC B Data Input Lane 4 Negative.
K3	DIN1B_N	DAC B Data Input Lane 1 Negative.
K4	DOUT3D_P	ADC D Data Output Lane 3 Positive.
K5	DOUT3D_N	ADC D Data Output Lane 3 Negative.
K6	DOUT3C_P	ADC C Data Output Lane 3 Positive.
K7	DCO_N	LVDS Data Clock Output Negative.
K8	DCO_P	LVDS Data Clock Output Positive.
K9	DOUT3B_P	ADC B Data Output Lane 3 Positive.
K10	DOUT3A_N	ADC A Data Output Lane 3 Negative.
K11	DOUT3A_P	ADC A Data Output Lane 3 Positive.
K12	DIN1A_N	DAC A Data Input Lane 1 Negative.
K13	DIN4A_N	DAC A Data Input Lane 4 Negative.
K14	DIN6A_N	DAC A Data Input Lane 6 Negative.

Pin No.	Mnemonic	Description
L1	DIN6B_P	DAC B Data Input Lane 6 Positive.
L2	DIN4B_P	DAC B Data Input Lane 4 Positive.
L3	DIN1B_P	DAC B Data Input Lane 1 Positive.
L4	DOUT1D_N	ADC D Data Output Lane 1 Negative.
L5	DOUT2D_N	ADC D Data Output Lane 2 Negative.
L6	DOUT1C_N	ADC C Data Output Lane 1 Negative.
L7	DOUT3C_N	ADC C Data Output Lane 3 Negative.
L8	DOUT3B_N	ADC B Data Output Lane 3 Negative.
L9	DOUT1B_N	ADC B Data Output Lane 1 Negative.
L10	DOUT2A_N	ADC A Data Output Lane 2 Negative.
L11	DOUT1A_N	ADC A Data Output Lane 1 Negative.
L12	DIN1A_P	DAC A Data Input Lane 1 Positive.
L13	DIN4A_P	DAC A Data Input Lane 4 Positive.
L14	DIN6A_P	DAC A Data Input Lane 6 Positive.
M1	DIN5B_N	DAC B Data Input Lane 5 Negative.
M2	DIN3B_N	DAC B Data Input Lane 3 Negative.
M3	DIN3B_P	DAC B Data Input Lane 3 Positive.
M4	DOUT1D_P	ADC D Data Output Lane 1 Positive.
M5	DOUT2D_P	ADC D Data Output Lane 2 Positive.
M6	DOUT1C_P	ADC C Data Output Lane 1 Positive.
M7	STROBE_N	LVDS Data Output Strobe Negative.
M8	STROBE_P	LVDS Data Output Strobe Positive.
M9	DOUT1B_P	ADC B Data Output Lane 1 Positive.
M10	DOUT2A_P	ADC A Data Output Lane 2 Positive.
M11	DOUT1A_P	ADC A Data Output Lane 1 Positive.
M12	DIN3A_N	DAC A Data Input Lane 3 Negative.
M13	DIN3A_P	DAC A Data Input Lane 3 Positive.
M14	DIN5A_N	DAC A Data Input Lane 5 Negative.
N1	DIN5B_P	DAC B Data Input Lane 5 Positive.
N2	DIN2B_N	DAC B Data Input Lane 2 Negative.
N3	DINOB_N	DAC B Data Input Lane 0 Negative.
N4	DOUTOD_N	ADC D Data Output Lane 0 Negative.
N5	DOUTOC_N	ADC C Data Output Lane 0 Negative.
N6	DOUT2C_N	ADC C Data Output Lane 2 Negative.
N9	DOUT2B_N	ADC B Data Output Lane 2 Negative.
N10	DOUTOB_N	ADC B Data Output Lane 0 Negative.
N11	DOUTOA_N	ADC A Data Output Lane 0 Negative.
N12	DINOA_N	DAC A Data Input Lane 0 Negative.
N13	DIN2A_N	DAC A Data Input Lane 2 Negative.
N14	DIN5A_P	DAC A Data Input Lane 5 Positive.
P2	DIN2B_P	DAC B Data Input Lane 2 Positive.
P3	DINOB_P	DAC B Data Input Lane 0 Positive.
P4	DOUTOD_P	ADC D Data Output Lane 0 Positive.
P5	DOUTOC_P	ADC C Data Output Lane 0 Positive.
P6	DOUT2C_P	ADC C Data Output Lane 2 Positive.
P7	DCI_N	LVDS Data Clock Input Negative.
P8	DCI_P	LVDS Data Clock Input Positive.
P9	DOUT2B_P	ADC B Data Output Lane 2 Positive.
P10	DOUTOB_P	ADC B Data Output Lane 0 Positive.
P11	DOUTOA_P	ADC A Data Output Lane 0 Positive.
P12	DINOA_P	DAC A Data Input Lane 0 Positive.
P13	DIN2A_P	DAC A Data Input Lane 2 Positive.

TYPICAL PERFORMANCE CHARACTERISTICS

RECEIVER ADC PERFORMANCE

$\mathrm{f}_{\mathrm{ADC}}=250 \mathrm{MHz}$, unless otherwise specified.

Figure 3. Single Tone FFT, $f_{I N}=87 \mathrm{MHz}$

Figure 4. Single Tone SNR and SFDR vs. Input Amplitude $\left(A_{I N}\right), f_{I N}=87 \mathrm{MHz}$

Figure 5. Two Tone SFDR vs. Input Amplitude $\left(A_{I N}\right), f_{\mid N 1}=89.12 \mathrm{MHz}$,

$$
f_{N 2}=92.12 \mathrm{MHz}
$$

Figure 6. Two Tone IMD3 vs. Input Amplitude $\left(A_{I N}\right), f_{I N 1}=89.12 \mathrm{MHz}, f_{I N 2}=$ 92.12 MHz

Figure 7. Single Tone SNR vs. Input Frequency $\left(f_{I N}\right)$

Figure 8. Single Tone SNR vs. Input Frequency ($f_{I N}$)

AD9993

$\mathrm{f}_{\mathrm{ADC}}=250 \mathrm{MHz}$, unless otherwise specified.

Figure 9. Two Tone FFT, $f_{I N 1}=89.12 \mathrm{MHz}, f_{I^{N} 2}=92.12 \mathrm{MHz}$

Figure 10. Single Tone SNR vs. ADC Sampling Freqency (f $f_{A D C}$), $f_{I N}=90.0 \mathrm{MHz}$, All Four ADCs

Figure 11. Single Tone SFDR vs. ADC Sampling Freqency $\left(f_{A D C}\right), f_{I N}=90.0 \mathrm{MHz}$, All Four ADCs

TRANSMITTER DAC PERFORMANCE

$\mathrm{f}_{\mathrm{DAC}}=500 \mathrm{MHz}$, unless otherwise specified.

Figure 12.5 MHz Bandwidth 256-QAM Adjacent Channel Power

Figure 13. SFDR, $2^{\text {nd }}$ and $3^{\text {rd }}$ Harmonics vs. fout, Maximum loutfs (DAC Gain)

Figure 14. SFDR at Three Temperatures vs. fout

Figure 15. $1^{\text {st }}$ Nyquist Zone Output Spectrum, $f_{\text {out }}=48 \mathrm{MHz}$

Figure 16. SFDR at Three DAC Sampling Frequencies (fDAC) vs. fout

Figure 17. IMD3 vs. fout, Both DACs

AD9993

$\mathrm{f}_{\mathrm{DAC}}=500 \mathrm{MHz}$, unless otherwise specified.

Figure 18. IMD3 at Three DAC Sampling Frequencies ($f_{\text {DAC }}$) vs. $f_{\text {OUT }}$

Figure 19. NSD at Three Temperatures vs. fout

TERMINOLOGY

Linearity Error (Integral Nonlinearity or INL)

INL is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale.

Differential Nonlinearity (DNL)

DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.

Monotonicity

A digital-to-analog converter is monotonic if the output either increases or remains constant as the digital input increases.

Offset Error

Offset error is the deviation of the output current from the ideal of zero. For IOUTx_P, 0 mA output is expected when the inputs are all 0 s . For IOUTx_N, 0 mA output is expected when all inputs are set to 1 .

Gain Error

Gain error is the difference between the actual and ideal output span. The actual span is determined by the output when all inputs are set to 1 , minus the output when all inputs are set to 0 . The ideal gain is calculated using the measured VREF. Therefore, the gain error does not include effects of the reference.

Output Compliance Voltage

Output compliance voltage is the range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.

Temperature Drift

Temperature drift is specified as the maximum change from the ambient $\left(25^{\circ} \mathrm{C}\right)$ value to the value at either $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. For offset and gain drift, the drift is reported in ppm of fullscale range (FSR) per ${ }^{\circ} \mathrm{C}$. For reference drift, the drift is reported in ppm per ${ }^{\circ} \mathrm{C}$.

Settling Time

Settling time is the time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition.

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference, in decibels (dB), between the rms amplitude of the output signal and the peak spurious signal over the specified bandwidth.

Noise Spectral Density (NSD)
Noise spectral density is the average noise power normalized to a 1 Hz bandwidth, with the DAC converting and producing an output tone.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.

Signal to Noise and Distortion (SINAD)

The ratio of the total signal power level (wanted signal + noise + distortion or SND) to unwanted signal power (noise + distortion or ND).

THEORY OF OPERATION
 PRODUCT DESCRIPTION

Figure 1 shows a block diagram of the MxFE. This product integrates four 14-bit ADCs and two 14-bit DACs. The DAC data interface consists of six DDR LVDS data lanes for each DAC and a shared DCI_P/DCI_N clock (hereafter referred to as DCI). The ADC data interface consists of four DDR LVDS data lanes for each ADC with a shared DCO_P/DCO_N clock (hereafter referred to as DCO) and a shared STROBE output. The MxFE control and status registers are written/read via an SPI interface. ADC and DAC datapaths include FIFO buffers to absorb phase differences between LVDS lane timing and the data converter sampling clocks. Internal AD9993 clock signals can be developed from an external clock signal or from the output of an on-chip PLL frequency multiplier driven by an external reference oscillator.

SPI PORT

The AD9993 provides a 4-wire synchronous serial communications SPI port that allows easy interfacing to ASICs, FPGAs, and industry-standard microcontrollers. The interface facilitates read/write access to all registers that configure the AD9993. Its data rate can be up to 25 MHz .

SPI Port Signals

SPI_SCLK (serial clock) is the serial shift clock. The serial clock pin synchronizes data to and from the device and runs the internal state machines. All address and input data bits are sampled on the rising edge of SPI_SCLK. All output data is driven out on the falling edge of SPI_SCLK.
$\overline{\text { SPI_CS (chip select) is an active low control signal used by the }}$ SPI master to select the AD9993 SPI port. When $\overline{\text { SPI_CS }}$ is high, SPI_SDO is in a high impedance state. During the communication cycle, chip select must remain low.

SPI_SDI (serial data input) is the address and data input, sampled on the rising edge of SPI_SCLK.
SPI_SDO (serial data output) is the data output pin. Data is shifted out on the falling edge of SCLK

Figure 20 shows a timing diagram for a single byte MSB first AD9993 SPI write operation. Each AD9993 register address is an 8 -bit value. During the first SPI_SCLK cycle, SPI_SDI $=0$, indicating that the operation is a data write. SPI_SDI is always held low for the next two clock cycles. The next 13 clock cycles are the first register address. The next eight clock cycles contain data to be written. The write operation ends when SPI_CS goes high. In this example, data for one 8 -bit register is written. Multiple registers can be written in a single write operation by keeping $\overline{\text { SPI_CS }}$ low for multiple byte periods. The register address is automatically updated using an address counter as bytes are written while $\overline{\text { SPI_CS }}$ remains low.
Figure 21 depicts an MSB first register read operation. Register data from the AD9993 appears on SPI_SDO starting on the SPI_SCLK cycle following the last bit of the 16-bit instruction header on SPI_SDI. Multiple registers can be read in a single read operation by keeping $\overline{\text { SPI_CS }}$ low for multiple byte periods.

Figure 20. 4-Wire SPI Interface Timing, MSB First Write

Figure 21. 4-Wire SPI Interface Timing, MSB First Read

SPI CONFIGURATION PROGRAMMING

The SPI_CONFIG register controls AD9993 SPI interface operation. By default, the SPI bus operates MSB first. In MSB fist mode, the register address counter decrements automatically during multiple byte reads or writes. The SPI bus can be configured to run LSB first by setting the SPI_LSB_FIRSTx bits to 1 . During LSB first multiple register read or write operations, the register address counter is incremented automatically. SPI registers can be reset to their Reset values by setting the self clearing SPI_SOFT_RESETx bits to 1 .

REGISTER UPDATE TRANSFER METHOD

Changes to the writeable SPI registers labeled transfer in Table 10 do not take effect immediately when written to the device via the SPI. Values are held in a shadow register set until the self clearing CHIP_REGMAP_TRANSFER bit in the DEVICE_ UPDATE register is set. All changes to transfer register values then take effect simultaneously.

ADC REGISTER UPDATE INDEXING

In addition to the register transfer mechanism, the POWER_ MODES and FLEX_OUTPUT_MODE registers have an indexing mechanism. Each of the four ADC cores has its own page containing these registers. These pages can be programmed independently or simultaneously in any combination. ADC core register sets are addressed for a particular register map master/slave transfer by setting the SPI_ADC_x_INDEX bits in the DEVICE_INDEX register. Register data is transferred to the ADC core pages that have these bits set when the next transfer occurs.

ADCs

The MxFE ADCs are multistage pipelined CMOS ADC cores designed for use in communications receivers.

ADC ARCHITECTURE

The AD9993 architecture consists of a dual front-end sample-and-hold circuit, followed by a pipelined switched capacitor ADC. The quantized outputs from each stage are combined into a final 14-bit result.
The input stage of each ADC core contains a differential sampling circuit that can be ac- or dc-coupled in differential or single-ended modes.

Input Common-Mode Voltage ($V_{c M}$) References

The analog inputs of the AD9993 are not internally dc biased. In ac-coupled applications, the user must provide this bias externally. Setting the device so that $\mathrm{V}_{\mathrm{CM}}=0.5 \times$ AVDD (or 0.9 V) is recommended for optimum performance. Four on-board common-mode voltage references are included in the design, one for each AD9993 ADC, and are available from the

A_CML, B_CML, C_CML, and D_CML pins. Using these common-mode voltage outputs to set the input common mode of each ADC is recommended. Optimum performance is achieved when the common-mode voltage of the analog input is set by the on-chip common mode references. The A_CML, B_CML, C_CML, and D_CML pins must be decoupled to ground by a $0.1 \mu \mathrm{~F}$ capacitor.

ADC SECTION PROGRAMMING

Each of the four ADCs has its power mode programmed by the indexed ADC_PDWN_MODE bit field of the POWER_ MODES register (see the ADC Register Update Indexing section). At reset, all four ADC cores are in power-down mode.

ADC digital data output modes are programmed by the indexed FLEX_OUTPUT_MODE register (see the ADC Register Update Indexing section). Setting the DP_OUT_DATA_EN_N bit to 0 enables the data output of each ADC selected in the DEVICE_ INDEX register. At reset, ADC output data is disabled. Setting the DP_OUT_DATA_INV bit to 1 inverts the data output from selected ADCs. The DP_OUT_DFS bit field selects the output code for each selected ADC, offset binary (twos complement with the sine bit inverted), twos complement (reset value), or gray code.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9993 is a differential switched capacitor circuit that has been designed for optimum performance while processing a differential input signal.
For baseband applications where SNR is a key parameter, differential transformer coupling is the recommended input configuration. An example is shown in Figure 22. To bias the analog input, the $\mathrm{V}_{\text {CM }}$ voltage can be connected to the center tap of the secondary winding of the transformer.

Figure 22. Differential Transformer-Coupled Configuration
Differential double balun coupling is used as the input configuration for AD9993 ADC performance characterization (see Figure 23). In this configuration, the input is ac-coupled and the V_{CM} voltage is provided to each input through a 33Ω resistor. These resistors compensate for losses in the input baluns to provide a 50Ω impedance to the driver.

Figure 23. Differential Double Balun Input Configuration

In the double balun and transformer configurations, the value of the input capacitors and resistors is dependent on the input frequency and source impedance. Based on these parameters, the value of the input resistors and capacitors may need to be adjusted or some components may need to be removed. Table 7 displays recommended values to set the RC network for the 0 MHz to 100 MHz frequency range:

Table 7. Example RC Network

Component	Value
R1 Series	33Ω
C1 Differential	8.2 pF
R2 Series	0Ω
C2 Shunt	15 pF
R3 Shunt	49.9Ω

The values given in Table 7 are for each R1, R2, C1, C2, and R3 component shown in Figure 22 and Figure 23.

ADRF6518 as ADC Driver

The ADRF6518 is a variable gain amplifier and low-pass filter that is designed to drive the analog inputs of analog-to-digital converters like the ones included in the AD9993. A principle application of the ADRF6518 is as part of the signal chain in a wideband radio receiver. Figure 32 shows a block diagram for a wideband microwave radio that includes the ADRF6518 and the AD9993.
The low impedance ($<10 \Omega$) output buffers of the ADRF6518 are designed to drive ADC inputs. They are capable of delivering up to 4 V p-p composite two-tone signals into 400Ω differential loads with $>60 \mathrm{dBc}$ IMD3. The output common-mode voltage can be adjusted to 900 mV (the AD9993 input common-mode voltage) without loss of drive capability by presenting the ADRF6518 VOCM pin with the desired common-mode voltage. The high input impedance of VOCM allows the AD9993 reference output (A_CML, B_CML, C_CML or D_CML) to be connected directly.

DACs

The MxFE DACs are part of the Analog Devices high speed CMOS DAC core family. These DACs are designed to be used as part of wide bandwidth communication system transmitter signal chains.

DAC TRANSFER FUNCTION

The AD9993 DACs provide two differential current outputs: IOUTA_P/IOUTA_N, and IOUTB_P/IOUTB_N.

The DAC output current equations are as follows:

$$
\begin{aligned}
& \text { IOUTx_P }=\text { Ioutrs } \times D A C x \text { input code } / 2^{14} \\
& \text { IOUTx_ } N=\text { Ioutrs } \times\left(\left(2^{14}-1\right)-D A C x \text { input code }\right) / 2^{14}
\end{aligned}
$$

where:
DACx input code $=0$ to $2^{14}-1$.
Ioutrs is the full-scale output current or DAC gain specified in Table 1.

$$
I_{\text {oUTFS }}=32 \times I_{\text {IREFx }}
$$

where $I_{\text {REFx }}=V_{\text {REFDAC }} / R_{\text {FSAD_ }-x}$.
Each DAC has its own $\mathrm{I}_{\text {REfx }}$ set resistor, $\mathrm{R}_{\text {FSADJ_x. }} \mathrm{R}_{\mathrm{FSADJ} \mathrm{x}}$ resistors can be on or off chip at the discretion of the users. The nominal value of $R_{\text {fsadj_x }}$ is $1.6 \mathrm{k} \Omega$. The nominal value of $\mathrm{V}_{\text {refdac }}$ is 1.0 V . $V_{\text {refdac }}$ can be selected as the on-chip band gap reference or as an external user supplied reference.
DAC outputs have a $\sin \left(\pi f_{\text {OUT }} / f_{\text {DAC }}\right) /\left(\pi f_{\text {OUT }} / f_{\text {DAC }}\right)$ envelope response as a function frequency. This response is also referred to as a sinc envelope.

DAC OUTPUT COMPLIANCE VOLTAGE RANGE AND AC PERFORMANCE

Each DAC has a pair of differential current outputs. The compliance voltage range for each of these two outputs is specified in Table 1. Optimal DAC ac performance is achieved when the output common-mode voltage is between 0.0 V and 0.5 V . and the signal swing falls within the compliance range.

Figure 24. DACs, Band Gap Reference, On-Chip and Off-Chip RFSAD_x, DAC Gain Setting, and IQ Calibration

Selecting DAC Output Common-Mode Voltage

Two steps are required to select the common-mode output voltages for the two DACs. For a common-mode voltage less than 0.5 V , the CML_A and CML_B pins are grounded. For common-mode voltages that are greater than or equal to 0.5 V , connect a $0.1 \mu \mathrm{~F}$ capacitor between CML_A or CML_B and ground. The second step is to program the DAC_VCM_ VREF_BIT bit field. There are three common-mode level settings to choose from. This common-mode setting applies to both DACs.

DAC VOLTAGE REFERENCE

The DACs use a single common voltage reference. An on-chip band gap reference is provided. Optionally, an off-chip voltage reference can be used. If an off-chip DAC reference is used, set the DAC_REF_EXT bit in the DAC_CTRL register to 1 . After reset, the on-chip reference is selected.

DAC GAIN SETTING

Figure 24 is a diagram of the AD9993 DACs gain setting section. It shows the two transmit DACs, the bypassable built-in 1.0 V band gap reference, and the selectable internal and board level $\mathrm{R}_{\text {FSADJ_x }}$ resistors. By default, the on-chip band gap reference is selected. If using a board level. DAC reference voltage, write 1 to the DAC_REF_EXT bit of the DAC_CTRL register.
Each DAC has its own $\mathrm{R}_{\text {FSADI_x }}$ set resistor. These resistors can be on or off chip at the discretion of the user. When the on-chip resistors are in use, their gain accuracy is factory calibrated. When the off-chip RESADJ_x resistors are used, an on-chip IQ calibration scheme can be employed to maintain accuracy between DAC pairs. By default, the on-chip $\mathrm{R}_{\text {FSADJ_x }}$ is selected. If using a board level RESAD_x, write 0 to the DAC_RSET_EN bit of the DAC_CTRL register.

DAC IQ Gain Calibration

When board level Resad_x resistors are used, the gains of the two DACs can be better matched by running the automatic DAC IQ gain calibration procedure. This is done by programming the DAC_CAL_IQ_CTRL register and observing the DAC_CAL_IQ_STAT register as follows:

1. Write 0x23 to DAC_CAL_IQ_CTRL (power up the DAC clock, enable IQ calibration, and start IQ calibration).
2. Read the DAC_CAL_IQ_DONE bit of the DAC_CAL_IQ_STAT register until it goes high.
3. Write 0×4 to DAC_CAL_IQ_CTRL.

DAC DATAPATH FORMAT SELECTION

At reset, the DAC_BINARY bit in the DAC_DP_FMT register is set to 0 , selecting twos complement as the data input format for both DACs. To select binary offset, set the DAC_BINARY bit to 1 .

DAC TEST TONE GENERATOR DDS

The AD9993 includes a tunable direct digital synthesizer for DAC output tone generation. When the DDS_EN bit of the DDS_CTRL register is set to 1 , the DDS becomes the digital signal source for the two DACs. The DDS_CTRL register also has a clock inversion control and amplitude attenuation controls. At reset, the 32 -bit DDS tuning word in the DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0 registers is set to $0 \times 19 \mathrm{~A} 00000$. This value programs the DDS to produce a 50 MHz tone at both DAC outputs if the master clock frequency is 1 GHz (DAC sampling rate $=500 \mathrm{MSPS}$). The equation for DDS output frequency is

$$
f_{D D S}=\left(D D S_{-} T W 1 / 2^{32}\right) \times f_{D A C}
$$

CLOCKING

The clock signals for the LVDS lanes, the DACs, and the ADCs are developed from a single master clock signal. This signal is either input directly on the CLKP/CLKN pins or synthesized by an on-chip PLL multiplier using the REFCLK input signal as a reference. The ADC output and DAC input LVDS lanes run at the master clock frequency divided by 2 and are DDR. Data is clocked on both edges. The sampling rate of the ADCs is $1 / 4$ the master clock rate. The sampling rate of the DACs is $1 / 2$ the master clock frequency. A 1 GHz master clock is shown in Figure 1.
At a 1 GHz master clock frequency, the other on-chip clock frequencies are as follows:

- DCO (ADC DDR LVDS output lane clock): 500 MHz
- DCI (DAC DDR LVDS input lane clock): 500 MHz
- DAC sampling rate: 500 MSPS
- ADC sampling rate: 250 MSPS

ON-CHIP PLL CLOCK MULTIPLIER

Figure 25 shows a block diagram of the MxFE on-chip PLL clock multiplier. If the PLL clock multiplier is used to generate
the master clock, the buffered VCO output signal is divided by 4 to produce the synthesized master clock signal.
The reference clock of the on-chip PLL can be either 31.25 MHz or 62.5 MHz . When using a 62.5 MHz clock, a divide by 2 option is provided, as shown in Figure 25, such that the internal PLL reference clock can be set to 31.25 MHz .

A programmable loop filter is integrated on chip. At reset, the on-chip loop filter bandwidth is set to 500 kHz . Lower loop bandwidth can be achieved using an external loop filter connected to the CP pin, as shown in Figure 25.

An on-chip LDO provides the supply voltage for the VCO.

PLL Synthesizer Control and Status Registers

At reset, the SYNTH_INT register contains the reset default value for the VCO output divider of 64 (shown in Figure 25). The PLL multiplier lock status can be read back on Bit 1 of the SYNTH_STAT register. Calibration status is also read from this register. Bits in the SYNTH_CTRL register are used to enable charge pump calibration and to start synthesizer calibration. Synthesizer calibration is required as part of the process of acquiring lock. Charge pump calibration and synthesizer calibration are steps described in the Power-Up Routine When Using the On-Chip Clock Synthesizer section.

Figure 26. MxFE Clock Control

SELECTING CLOCKING OPTIONS

Figure 26 is a block diagram of the MxFE clocking system and its controls. Options of using either an external master clock or a master clock generated from the on-chip PLL are provided. CLKGEN_MODE[1:0] in the CLKGEN_CTRL2 register selects the PLL multiplier or CLKP/CLKN as the master clock source.

ADC DATAPATH AND DAC DATAPATH FIFOS

In the AD9993, data FIFOs are placed between the ADC core outputs and the LVDS buffers and drivers. Similarly, on the DAC side, data FIFOs are placed between the LVDS input buffers and the DAC cores. These FIFOs absorb the phase difference between DCI and the DAC sampling clock and between the ADC sampling clock and DCO. DAC sampling clock and DCI are locked in frequency but have an unknown phase relationship. The ADC sampling clock and DCO have the same characteristics.

FIFOs are eight samples deep. During a start-up register sequence, both the DAC input datapath FIFOs and the ADC output data path FIFOs have their read and write pointers initialized (see the Start-Up Register Sequences section). This occurs after all clocks in the AD9993 are running and settled. The pointers are set four data samples apart. The ADC datapath FIFO depth can be read in the RXFIFO_WR_OFFSET bit field in the align register. The DAC datapath FIFO depth can be read
as the RXFIFO_THERM[7:0] value in the DAC_FIFO_STS1 register. This value is a thermometer code. FIFO depths remain constant after initialization when all clocks are running properly.

LVDS INTERFACES

Each DAC has seven DDR LVDS input data lanes. Each DAC sample input requires the user to input two 7 -bit words to the interface with appropriate zero stuffing. Each ADC has four DDR LVDS output data lanes. For each ADC output sample, four 4-bit words are output.

LVDS ADC Data Link

There are two LVDS ADC buses for the two ADCs. Each LVDS ADC Data bus has four lanes for 14-bit data output in two full DDR cycles. A strobe lane is shared by the four ADC LVDS links to identify the MSB of the 14-bit data. Figure 27 shows one LVDS ADC output data link with four lanes. Lane 0 to Lane 2 output the 12 MSBs of the 14 -bit ADC data. Lane 3 carries the two LSBs of the 14-bit ADC data and an overrange bit.

LVDS DAC Data Link

There are two LVDS DAC data links for the dual DAC. Each LVDS DAC data link has seven lanes capable of transmitting 14-bit data in one DDR full cycle. Figure 28 shows one LVDS DAC input data link with seven lanes.

AD9993

Figure 27. Output Sample Data Format

Figure 28. DAC Input Sample Data Format

LVDS INTERFACE TIMING

DAC Input Interface

Table 8 specifies the setup and hold time requirements for DAC LVDS data lane inputs relative to DCI. Figure 29 shows a timing diagram for this interface. DDR DCI edges occur at the position within the data eye (the white region in Figure 29) listed in Table 8.

Table 8. DAC DDR LVDS Input Setup and Hold Times Relative to DCI (Guaranteed)

Parameter	Minimum	Unit
\mid tsu \mid	150	ps
$\left\|t_{\text {HoL }}\right\|$	200	ps
Data Period	1000	Ps

ADC Output Interface

Figure 30. ADC Output LVDS Lane Timing

Table 9 specifies the time between the ADC LVDS data lane output transitions and the DDR DCO clock edge 50\% transition point.

Table 9. ADC DDR LVDS Data and Strobe Output Setup and Hold Times Relative to DCO (Guaranteed)

Parameter	Minimum	Unit
$\left\|\mathrm{t}_{\text {su }}\right\|$	400	ps
$\left\|\mathrm{t}_{\text {HoLD }}\right\|$	430	ps
Data Period	1000	ps

LVDS LANE TESTING USING PRBS

One pseudorandom binary sequence (PRBS) generator is included for each ADC LVDS lane and one PRBS detector on each DAC LVDS lane. The designs for the generator and detector are implemented as a $23^{\text {rd }}$-order pseudorandom noise (PN23) sequence defined by the generator polynomial $\mathrm{x}^{23}+\mathrm{x}^{18}+1$. The initial seed of the generator is programmable so that each lane can output different values if started simultaneously. The four seed registers are indexed as described in the ADC Register Update Indexing section.
DAC PRBS test results are read back on the DAC_A_PRBS_ERRx and DAC_B_PRBS_ERRx error counter registers. The DAC input PRBS error counters are enabled and the error counters cleared by the bits in the DAC_PRBS_CTRL register. ADC output lane PRBS generation is controlled by the bits in the PRBS_GEN_CTRL register.

POWER MODE PROGRAMMING

The AD9993 has a POWER_MODES register that allows the user to place sections of the chip into different power modes. The PDWN_PIN_FUNC bit programs the function of the PDWN pin. By default, assertion of PDWN causes the AD9993 to go into full power-down. The clock generator, indexed ADCs, DACs, and PLL synthesizer are all powered down at reset. The indexed ADCs have four power modes. See the ADC Register Update Indexing section for a definition of indexing.

INTERRUPT REQUEST OPERATION

The AD9993 provides an interrupt request signal, $\overline{\operatorname{ALERT}}$. It is used to notify the user system of significant on-chip events. The ALERT pin is an open-drain, active low output.

Eight different event flags provide visibility into the device. These raw events are located in the INT_RAW register. These raw events are always latched in the INT register. If the event is left unmasked, the latched event triggers an external interrupt on ALERT. INTEN is the interrupt enable register. When an event is masked, the INT register captures the event in latched form. A masked event does not cause $\overline{\text { ALERT }}$ to go true.

The eight events that trigger an interrupt (if enabled) are

- PLL lock lost
- PLL locked
- FIFO Warning 1
- FIFO Warning 2
- ADC A overrange
- ADC B overrange
- ADC C overrange
- ADC D overrange

Interrupt Service Routine

For the interrupt service routine, interrupt request management starts by selecting the set of events that require host intervention or monitoring using the bits in the INTEN register. For events requiring host intervention, upon ALERT activation, run the following routine to clear an interrupt request:

1. Read the status of the latched bits in the INT register that are being monitored.
2. Monitor the unlatched status bits in the INT_RAW register directly if needed.
3. Perform any actions that may be required to clear the interrupt(s).
4. Read the INT_RAW bits to verify that the actions taken have cleared the event.
5. Clear the interrupt by writing 1 to the event flag bit in the INT register.

TEMPERATURE SENSOR

The AD9993 has a diode-based temperature sensor for measuring the temperature of the die. The temperature reading is accessed using the TS_RD_LSB and TS_RD_MSB registers. The temperature of the die can be calculated as

$$
T_{D I E}=\frac{\operatorname{Die} \operatorname{Temp}[15: 0]-41,237}{106}
$$

where:
$T_{D I E}$ is the die temperature in degrees Celsius.
Die Temp is the concatenated 16-bit contents of the TD_RD_LSB and TD_RD_MSB registers. The temperature accuracy is $\pm 7^{\circ} \mathrm{C}$ typical over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range with one point temperature calibration against a known temperature. A typical plot of the die temperature code readback vs. die temperature is shown in Figure 31.

Figure 31. Die Temperature Code Readback vs. Die Temperature
Estimates of the ambient temperature can be made if the power dissipation of the device is known.

START-UP REGISTER SEQUENCES POWER-UP ROUTINE WHEN USING THE ON-CHIP CLOCK SYNTHESIZER

To power up the device, set the register settings as described in the following sections.

Chip Power-Up

SPI.Write(0x008, $0 \times 00)$; power up all blocks

DAC Setup

SPI.Write(0x03A, $0 \times 02)$; DAC data format offset binary
or
SPI.Write(0x03A, 0x00); DAC data format twos complement

ADC Setup

SPI.Write(0x013, 0x00); enable ADC LVDS output and offset binary
or
SPI.Write(0x013, 0x01); enable ADC LVDS output and twos complement
SPI.Write(0x014, $0 \times 01)$; set LVDS to 2 mA (optional: 1 mA is default)
SPI.Write(0x0FF, 0x01); transfer

Synthesizer Setup (62.5 MHz Reference Clock Input)

SPI.Write(0x032, 0x01); SYNTH_CP_CAL_EN
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x032, 0x11); start synthesizer calibration
SPI.Write(0x0FF, 0x01); transfer
SPI.Read(0x02D); synthesizer status
0x01; calibration in progress
0x04; calibration done, synthesizer no lock

0x06;calibration done, synthesizer locked

Sythesizer Setup (31.25 MHz Reference Clock Input)

SPI.Write(0x033, 0x20); CLKGEN_REFCLK_DIV1
SPI.Write(0x032, 0x01); synthesizer CP_CAL_EN
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x032, 0x11); start synth calibration

SPI.Write(0x0FF, 0x01); transfer
SPI.Read(0x02D); synthesizer status
0x01; calibration in progress
0x04; calibration done, synthesizer no lock

0x06; calibration done, synthesizer locked

Synchronize LVDS Interface

SPI.Write(0x00A, 0×82); synchronize ADC data with DCO clock, self cleared but needs following SPI clock
SPI.Write(0x00A, 0x81); realign Tx FIFO read and write pointers, self cleared but need following SPI clock
SPI.Write(0x00A, 0x90); realign Rx FIFO read and write pointers, DCI clock must be present, self cleared but need following SPI clock

Miscellaneous

Clear Interrupt
SPI.Write(0x0F0, 0xFF)

Enable Interrupt

SPI.Write(0x0F1, 0xFF)
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN (optional)
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x039, 0×12); set DAC CML based on compliance range of 0.7 V and on-chip $\mathrm{R}_{\text {FSADJ_x }}$ resistors
Set this bit if using DAC compliance range $>0.7 \mathrm{~V}$.
SPI.Write(0x0ff, 0x001); data transfer

POWER-UP ROUTINE WHEN USING EXTERNAL CLOCK

Chip Power-Up
SPI.Write(0x008, $0 \times 00)$; power up all blocks

DAC Setup

SPI.Write(0x03A, 0x02); DAC data format offset binary
or
SPI.Write(0x03A, $0 \times 00)$; DAC data format twos complement

ADC Setup

SPI.Write(0x013, 0x00); enable ADC LVDS output and offset binary
or
SPI.Write(0x013, 0x01); enable ADC LVDS output and twos complement
SPI.Write(0x014, 0x01); set LVDS to 2 mA (optional: 1 mA is default)
SPI.Write(0x0FF, 0x01); transfer
External Clock Setup
SPI.Write(0x034, 0x07); set external clock mode
SPI.Write(0x0FF, 0x01); transfer

Synchronize LVDS Interface

SPI.Write(0x00A, 0x82); synchronize ADC data with DCO clock, self cleared but needs following SPI clock
SPI.Write(0x00A, 0x81); realign Tx FIFO read and write pointers, self cleared but need following SPI clock

SPI.Write(0x00A, 0x90); realign Rx FIFO read and write pointers, DCI clock must be present, self cleared but need following SPI clock.
Miscellaneous
Clear Interrupt
SPI.Write(0x0F0, 0xFF)

Enable Interrupt

SPI.Write(0x0F1, 0xFF)
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN (optional)
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x039, 0×12); set DAC CML based
on compliance range of 0.7 V and on-chip
$\mathrm{R}_{\text {FSADJ_x }}$ resistors,
Set this bit if using DAC compliance range $>0.7 \mathrm{~V}$
SPI.Write(0x0FF, $0 \times 001)$; data transfer

APPLICATIONS INFORMATION

DIRECT CONVERSION RADIO APPLICATION

A direct conversion radio application of the MxFE is shown in Figure 32. The DAC output signals, IOUTA_P/IOUTA_N and IOUTB_P/IOUTB_N, are differential currents. At 500 MSPS, DAC output signals fall within the $1^{\text {st }}$ Nyquist zone (dc to 250 MHz). DAC current outputs are converted to a voltage and then processed by passive low-pass filters (LPF). The low-pass filters reject out of band signal harmonics and their sampling images. The filter outputs feed the baseband inputs of a quadrature modulator. Quadrature modulator baseband inputs
must fall within an allowable voltage range, which gives rise to a common-mode voltage requirement at the outputs of the DACs.
The MxFE receive signal chain consists of a VGA followed by a quadrature demodulator, then by a programmable LPF, and another VGA. The ADRF6518 is an LPF and VGA specifically designed to drive the analog inputs of high speed ADCs like the ones on the MxFE. The LPF is an antialiasing filter. At 250 MSPS, the ADC signal bandwidth is 125 MHz .
See the ADRF6518 as ADC Driver section for further information about this interface.

Figure 32. Radio Signal Chain Example

REGISTER MAP

Table 10. SPI Accessible Register Summary

Address	Name	Description	Reset Value	RW
0x000	SPI_CONFIG	SPI configuration	0x18	RW
0x001	CHIP_ID	Chip ID	0xB2	R
0x002	CHIP_GRADE	CHIP_GRADE	0×01	R
0x005	DEVICE_INDEX	Device index	0x0F	RW
0x008	POWER_MODES	Power mode control (indexed)	0x55	RW
0x00A	ALIGN	Align ADC LVDS clocks, ADC FIFO, DAC FIFO	0x80	RW
0x00C	Reserved	Reserved	0x01	R
0x010	Reserved	Reserved	0x00	R
0×011	Reserved	Reserved	0x00	R
0×012	STROBE_CTRL	Strobe lane control (transfer)	0x00	RW
0x013	FLEX_OUTPUT_MODE	Output mode (transfer, indexed)	0x11	RW
0x014	FLEX_OUTPUT_ADJUST	LVDS Tx control (transfer)	0x00	RW
0×016	FLEX_VREF	$\mathrm{V}_{\text {REF }}$ control (transfer)	0x00	RW
0×017	PRBS_GEN_CTRL	PRBS generator control (transfer, indexed)	0x00	RW
0x020	PRBSO_SEED_MSB	8-bit seed MSB of PRBS generator for Lane0 (transfer, indexed)	0x01	RW
0×021	PRBS1_SEED_MSB	8-bit seed MSB of PRBS generator for Lane1 (transfer, indexed)	0x02	RW
0x022	PRBS2_SEED_MSB	8-bit seed MSB of PRBS generator for Lane2 (transfer, indexed)	0x03	RW
0x023	PRBS3_SEED_MSB	8-bit seed MSB of PRBS generator for Lane3 (transfer, indexed)	0x04	RW
0x02D	SYNTH_STAT	Synthesizer status	0x00	R
0x02E	LF_CTRL1	Loop filter control signals (transfer)	0x77	RW
0x02F	LF_CTRL2	Loop filter control signals (transfer)	0xF7	RW
0x030	LF_CTRL3	Loop filter control signals (transfer)	0x00	RW
0x031	SYNTH_INT	Integer value of synthesize divider (transfer)	0x40	RW
0×032	SYNTH_CTRL	Synthesizer control (transfer)	0x00	RW
0x033	CLKGEN_CTRL1	Clock generator control (transfer)	0x00	RW
0x034	CLKGEN_CTRL2	CLKGEN control (transfer)	0x04	RW
0x035	DAC_LVDS_CTRL	DAC LVDS Rx control (transfer)	0x4D	RW
0x036	DAC_LVDS_BIAS	DAC LVDS current bias control (transfer)	0x00	RW
0x037	Reserved	Reserved	0x00	RW
0x038	Reserved	Reserved	0x00	RW
0x039	DAC_CTRL	DAC cores control (transfer)	0x02	RW
0x03A	DAC_DP_FMT	DAC datapath format control (transfer)	0x00	RW
0x03C	DAC_CAL_IQ_CTRL	DAC IQ calibration control (transfer)	0x04	RW
0x03D	DAC_CAL_IQ_STAT	DAC IQ calibration status	0x00	R
0x03F	DAC_FIFO_STS1	DAC Rx FIFO Status 1	0x55	R
0x040	DAC_PRBS_CTRL	PRBS detector control (transfer)	0x00	RW
0x041	DAC_A_PRBS_ERRO	PRBS Detector Error Count 0 for DAC A	0x00	R
0x042	DAC_A_PRBS_ERR1	PRBS Detector Error Count 1 for DAC A	0x00	R
0x043	DAC_A_PRBS_ERR2	PRBS Detector Error Count 2 for DAC A	0x00	R
0x044	DAC_A_PRBS_ERR3	PRBS Detector Error Count 3 for DAC A	0x00	R
0x045	DAC_A_PRBS_ERR4	PRBS Detector Error Count 4 for DAC A	0x00	R
0x046	DAC_A_PRBS_ERR5	PRBS Detector Error Count 5 for DAC A	0x00	R
0×047	DAC_A_PRBS_ERR6	PRBS Detector Error Count 6 for DAC A	0x00	R
0x048	DAC_B_PRBS_ERRO	PRBS Detector Error Count 0 for DAC B	0x00	R
0x049	DAC_B_PRBS_ERR1	PRBS Detector Error Count 1 for DAC B	0x00	R
0x04A	DAC_B_PRBS_ERR2	PRBS Detector Error Count 2 for DAC B	0x00	R
0x04B	DAC_B_PRBS_ERR3	PRBS Detector Error Count 3 for DAC B	0x00	R
0x04C	DAC_B_PRBS_ERR4	PRBS Detector Error Count 4 for DAC B	0x00	R
0x04D	DAC_B_PRBS_ERR5	PRBS Detector Error Count 5 for DAC B	0x00	R
0x04E	DAC_B_PRBS_ERR6	PRBS Detector Error Count 6 for DAC B	0x00	R

AD9993

Address	Name	Description	Reset Value	RW
0x050	TS_RD_LSB	Bits[7:0] of Temperature sensor data readback	0x00	R
0x051	TS_RD_MSB	Bits[15:8] of Temperature sensor data readback	0x00	R
0x052	Reserved	Reserved	0x00	R
0x053	Reserved	Reserved	0x00	R
0x054	TS_CTRL	Temperature sensor control signals	0x01	RW
0x055	IRQ_CTRL	Interrupt pin control	0x00	RW
0x060	DDS_CTRL	DDS control	0x00	RW
0x061	DDS_TW1_0	DDS tuning word for Tone 1	0x00	RW
0x062	DDS_TW1_1	DDS tuning word for Tone 1	0x00	RW
0x063	DDS_TW1_2	DDS tuning word for Tone 1	0xA0	RW
0x064	DDS_TW1_3	DDS tuning word for Tone 1	0x19	RW
0x0FO	INT	Interrupt status	0x00	R
0x0F1	INTEN	Interrupt enable (transfer)	0x00	RW
0x0F2	INT_RAW	Interrupt source status	0x00	R
0x0FF	DEVICE_UPDATE	Global device update register	0x00	RW

AD9993

REGISTER DESCRIPTIONS

SPI CONFIGURATION REGISTER

Address: 0x000, Reset: 0x18, Name: SPI_CONFIG
[6] SPI_LSB_FIRST2 (RW)
SPI Least Significant Bit First
[5] SPI_SOFT_RESET2 (RW)

[1] SPI_LSB_FIRST1 (RW) SPI Least Significant Bit First Self-Clearing Soft Reset 1
[4:3] SPI_ADDR_MODE (R) 13 -bit addressing mode always enabled

Table 11. Bit Descriptions for SPI_CONFIG

Bits	Bit Name	Description	Reset	Access
6	SPI_LSB_FIRST2	SPI least significant bit first. $1=$ least significant bit shifted first for all SPI operations. On multibyte SPI operations, addressing increments automatically. $0=$ most significant bit shifted first for all SPI operations. On multibyte SPI operations, addressing decrements automatically. This bit must be accessed with all devices enabled and is not reset by setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.	0×0	RW
5	SPI_SOFT_RESET2	Self Clearing Soft Reset 1. Reset the SPI registers (self clearing). This bit must be accessed with all devices enabled.	$0 x 0$	RW
$[4: 3]$	SPI_ADDR_MODE	13-bit addressing mode always enabled.	RW	RW
2	SPI_SOFT_RESET1	Self Clearing Soft Reset 1. Reset the SPI registers (self clearing). This bit must be accessed with all devices enabled.	0x0	RW
1	SPI_LSB_FIRST1	SPI least significant bit first. $1=$ least significant bit shifted first for all SPI operations. On multibyte SPI operations, addressing increments automatically. $0=$ most significant bit shifted first for all SPI operations. On multibyte SPI operations, addressing decrements automatically. This bit must be accessed with all devices enabled and is not reset by setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.	0×0	

CHIP ID REGISTER

Address: 0x001, Reset: 0xB2, Name: CHIP_ID

Table 12. Bit Descriptions for CHIP_ID

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CHIP_ID	Chip ID. \quad Rev. A Page 30 of 56	$0 \times B 2$	R

AD9993

CHIP GRADE REGISTER

Address: 0x002, Reset: 0x01, Name: CHIP_GRADE
5.4] CHIP_SPEED_GRADE (R)

[2:0] CHIP_DIE_REV (R)

Table 13. Bit Descriptions for CHIP_GRADE

Bits	Bit Name	Description	Reset	Access
$[5: 4]$	CHIP_SPEED_GRADE	Chip ID/speed grade.	0×0	R
$[2: 0]$	CHIP_DIE_REV	Chip die revision.	0×1	R

DEVICE INDEX REGISTER

Address: 0x005, Reset: 0x0F, Name: DEVICE_INDEX
[3] SPI_ADC_D_INDEX (RW)
[2] SPI_ADC_C_INDEX (RW)

[0] SPI_ADC_A_INDEX (RW)
[1] SPI_ADC_B_INDEX (RW)

Table 14. Bit Descriptions for DEVICE_INDEX

Bits	Bit Name	Description	Reset	Access
3	SPI_ADC_D_INDEX	ADC Core D access enable. $1=$ ADC Core D receives the next read/write access from the SPI interface. $0=$ ADC Core D does not receive the next read/write access from the SPI interface.	$0 x 1$	RW
2	SPI_ADC_C_INDEX	ADC Core C access enable. $1=$ ADC Core C receives the next read/write access from the SPI interface. $0=$ ADC Core C does not receive the next read/write access from the SPI interface.	$0 x 1$	RW
1	SPI_ADC_B_INDEX	ADC Core B access enable. $1=$ ADC Core B receives the next read/write access from the SPI interface. $0=$ ADC Core B does not receive the next read/write access from the SPI interface.	$0 x 1$	RW
0	SPI_ADC_A_INDEX	ADC Core A access enable. $1=$ ADC Core A receives the next read/write access from the SPI interface. $0=$ ADC Core A does not receive the next read/write access from the SPI interface.	$0 x 1$	RW

AD9993

POWER MODE CONTROL REGISTER

Address: 0x008, Reset: 0x55, Name: POWER_MODES
[7] PDWN_PIN_FUNC (RW) power down pin function
[6] CLKGEN_PDWN (RW) clock gen power down mode
[5:4] SYNTH_PDWN_MODE synthesizer power down mode

[1:0] ADC_PDWN_MODE (RW) ADC power down mode (ADC Indexed) [3:2] DAC_PDWN_MODE (RW) DAC power down mode

Table 15. Bit Descriptions for POWER_MODES

Bits	Bit Name	Description	Reset	Access
7	PDWN_PIN_FUNC	Power-down pin function. External power-down pin mode. $0=$ assertion of external power-down pin (PDWN) causes chip to enter full power-down mode. $1=$ assertion of external power-down pin (PDWN) causes chip to enter standby mode.	0×0	RW
		Clock generation power-down mode.		
6	CLKGEN_PDWN	SYNTH_PDWN_MODE	Synthesizer power-down mode.	RX1
$[5: 4]$	DAC_PDWN_MODE	DAC power-down mode.	RW	
$[3: 2]$	ADC_PDWN_MODE	ADC power-down mode. (ADC indexed) $00=$ normal mode (power up). $01=$ power-down mode; digital datapath clocks disabled; digital datapath held in reset; outputs disabled. $10=$ standby mode; digital datapath clocks disabled; outputs disabled. $11=$ reserved.		RW
$[1: 0]$				

ALIGN ADC LVDS CLOCKS, ADC FIFO, DAC FIFO REGISTER

Address: 0x00A, Reset: 0x80, Name: ALIGN

Table 16. Bit Descriptions for ALIGN

Bits	Bit Name	Description	Reset	Access
$[7: 5]$	RXFIFO_WR_OFFSET	The distance of Rx FIFO write pointer away from read pointer; needs	0×4	
		RXFIFO_ALIGN_REQ asserted to apply this value to datapath.		
4	RXFIFO_ALIGN_REQ	Align Rx FIFO read and write pointers.	0×0	RW
1	LVDS_DCO_SYNC	Sync LVDS Tx DCO with data and strobe (self clear with following SPI clock).	0×0	RW
0	TXFIFO_ALIGN	Align Tx FIFO read and write pointers (self clear with following SPI clock).	0×0	RW

STROBE LANE CONTROL REGISTER

Address: 0x012, Reset: 0x00, Name: STROBE_CTRL

[0] STROBE_DUTY_CYCLE_EN (RW)

Table 17. Bit Descriptions for STROBE_CTRL

Bits	Bit Name	Description	Reset	Access
$[7: 4]$	STROBE_SAMPLE_RATE	Sample rate of strobe output.		
		$0=1 / 1$ of data sample rate.	RW	
		$1=1 / 2$ of data sample rate.		
		$2=1 / 4$ of data sample rate.		
		$3=1 / 8$ of data sample rate.	$4=1 / 16$ of data sample rate.	
		$5=1 / 32$ of data sample rate.		
		$6=1 / 64$ of data sample rate.		
		$7=1 / 128$ of data sample rate.		
		$8=1 / 256$ of data sample rate.		
		Needs at least one ADC channel working.		
		STROBE_DUTY_CYCLE_EN	Enable 50% duty cycle of strobe lane. Needs at least one ADC channel	
	working.	0×0	RW	

OUTPUT MODE REGISTER

Address: 0x013, Reset: 0x11, Name: FLEX_OUTPUT_MODE
[4] DP_OUT_DATA_EN_N (RW)

[1:0] DP_OUT_DFS (RW)
(ADC Indexed)
(ADC Indexed)
[2] DP_OUT_DATA_INV (RW) (ADC Indexed)

Table 18. Bit Descriptions for FLEX_OUTPUT_MODE

Bits	Bit Name	Description	Reset	Access
4	DP_OUT_DATA_EN_N	Digital datapath output enable (active low) (ADC indexed). $0=$ digital output from ADC is enabled. $1=$ digital output from ADC is disabled.	0×1	RW
2	DP_OUT_DATA_INV	Digital datapath output invert (ADC indexed). $0=$ output from ADC is not inverted. $1=$ output from ADC is inverted.	0×0	RW
$[1: 0]$	DP_OUT_DFS	Digital datapath output data format select (DFS) (ADC indexed). $00=$ offset binary. $01=$ twos complement. $10=$ gray code. $11=$ reserved.	0×1	RW

AD9993

LVDS TX CONTROL REGISTER

Address: 0x014, Reset: 0x00, Name: FLEX_OUTPUT_ADJUST

Table 19. Bit Descriptions for FLEX_OUTPUT_ADJUST

Bits	Bit Name	Description	Reset	Access
[7:5]	LVDS_BIAS_DAC	Sets LVDS output swing. $\begin{aligned} & 000=200 \mathrm{mV} . \\ & 001=227 \mathrm{mV} . \\ & 010=257 \mathrm{mV} . \\ & 011=282 \mathrm{mV} . \\ & 100=296 \mathrm{mV} . \\ & 101=330 \mathrm{mV} . \\ & 110=350 \mathrm{mV} . \\ & 111=372 \mathrm{mV} . \end{aligned}$	0x0	RW
[4:2]	LVDS_BG_TRIM	Band gap trim for LVDS Tx DOUTxx_P and DOUTxx_N pins.	0x0	RW
[1:0]	LVDS_DRIVE	Output LVDS drive current. $00=1 \mathrm{~mA}$ output drive current (default). $01=2 \mathrm{~mA}$ output drive current. $10=3 \mathrm{~mA}$ output drive current. $11=4 \mathrm{~mA}$ output drive current.	0x0	RW

$V_{\text {REF }}$ CONTROL REGISTER

Address: 0x016, Reset: 0x00, Name: FLEX_VREF

Table 20. Bit Descriptions for FLEX_VREF

Bits	Bit Name	Description	Reset	Access
$[4: 0]$	VREF_FS_ADJ	Main reference full-scale VREF adjustment.	0×0	RW
		$01111=$ internal 2.087 V p-p.		
		\ldots		
		$00001=$ internal $1.772 \mathrm{~V} \mathrm{p-p}$.		
		$00000=$ internal $1.75 \mathrm{~V} \mathrm{p-p}$.		
		$11111=$ internal $1.727 \mathrm{~V} \mathrm{p-p}$.		

PRBS GENERATOR CONTROL REGISTER

Address: 0x017, Reset: 0x00, Name: PRBS_GEN_CTRL
[5] STROBE_PRBS_RESET (RW) (Transfer not needed)
[4] STROBE_PRBS_EN (RW)

[0] DP_PRBS_GEN_EN (RW)
(ADC Indexed)
[1] DP_PRBS_GEN_RESET (RW) (Transfer not needed, ADC Indexed)

Table 21. Bit Descriptions for PRBS_GEN_CTRL

Bits	Bit Name	Description	Reset	Access
5	STROBE_PRBS_RESET	Reset PRBS generator on strobe lane (transfer not needed). $0=$ normal working if PRBS enabled. $1=$ reset the PRBS on strobe lane.	RW	
		Enable PRBS testing on strobe lane. $0=$ normal mode working with STROBE_DUTY_CYCLE_EN and STROBE_SAMPLE_RATE. $1=$ test mode only. Note: needs at least one ADC channel working.	0×0	RW
4	STROBE_PRBS_EN	Pseudorandom binary sequence generator reset (transfer not needed, ADC indexed). $0=$ PRBS generator enabled. $1=$ PRBS generator held in reset.	0×0	RW
1	DP_PRBS_GEN_RESET	Enable PRBS generating on ADC data lanes (ADC indexed).		
0	DP_PRBS_GEN_EN		0×0	RW

8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 0 REGISTER

Address: 0x020, Reset: 0x01, Name: PRBSO_SEED_MSB
[7:0] DP_PRBSO_SEED_MSB (RW)

(ADC Indexed)

Table 22. Bit Descriptions for PRBSO_SEED_MSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DP_PRBSO_SEED_MSB	8-bit MSB seed of PRBS generator in Lane 0 (ADC indexed). The 15 -bit LSB is always 0x3AFF.	0×1	RW

AD9993

8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 1 REGISTER

Address: 0x021, Reset: 0x02, Name: PRBS1_SEED_MSB
[7:0] DP_PRBS1_SEED_MSB (RW)
 (ADC Indexed)

Table 23. Bit Descriptions for PRBS1_SEED_MSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DP_PRBS1_SEED_MSB	8-bit MSB seed of PRBS generator in Lane 1 (ADC indexed.) The 15-bit LSB is always 0x3AFF.	0×2	RW

8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 2 REGISTER

Address: 0x022, Reset: 0x03, Name: PRBS2_SEED_MSB

Table 24. Bit Descriptions for PRBS2_SEED_MSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DP_PRBS2_SEED_MSB	8-bit MSB seed of PRBS generator in Lane 2 (ADC indexed). The 15-bit LSB is always 0x3AFF.	0×3	RW

8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 3 REGISTER

Address: 0x023, Reset: 0x04, Name: PRBS3_SEED_MSB
[7:0] DP_PRBS3_SEED_MSB (RW)
 (ADC Indexed)

Table 25. Bit Descriptions for PRBS3_SEED_MSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DP_PRBS3_SEED_MSB	8-bit MSB seed of PRBS generator in Lane 3 (ADC indexed). The 15-bit LSB is always 0x3AFF.	0×4	RW

SYNTHESIZER STATUS REGISTER

Address: 0x02D, Reset: 0x00, Name: SYNTH_STAT
[2] SYNTH_CP_CAL_DONE (R) Charge pump calibration done

[0] SYNTH_VCO_CAL_IN_PROGRESS (R) VCO calibration in progress
[1] SYNTH_LOCKDET (R) synthesizer frequency locked

Table 26. Bit Descriptions for SYNTH_STAT

Bits	Bit Name	Description	Reset	Access
2	SYNTH_CP_CAL_DONE	Charge pump calibration done.	0×0	R
1	SYNTH_LOCKDET	Synthesizer frequency locked.	0×0	R
0	SYNTH_VCO_CAL_IN_PROGRESS	VCO calibration in progress.	0×0	R

LOOP FILTER CONTROL SIGNALS REGISTER

Address: 0x02E, Reset: 0x77, Name: LF_CTRL1

Table 27. Bit Descriptions for LF_CTRL1

Bits	Bit Name	Description	Reset	Access
[6:4]	LF_C2	Loop filter coefficient. $000=3.13 \mathrm{pF}$. $001=2.26 \mathrm{pF}$. $010=9.39 \mathrm{pF}$. $011=12.52 \mathrm{pF}$. $100=15.65 \mathrm{pF}$. $101=18.78 \mathrm{pF}$. $110=21.91 \mathrm{pF}$. $111=25.04 \mathrm{pF}$.	0x7	RW
[2:0]	LF_C1	Loop filter coefficient. $\begin{aligned} & 000=46.584 \mathrm{pF} . \\ & 001=93.168 \mathrm{pF} . \\ & 010=139.752 \mathrm{pF} \\ & 011=186.336 \mathrm{pF} . \\ & 100=232.920 \mathrm{pF} \\ & 101=279.504 \mathrm{pF} \\ & 110=326.088 \mathrm{pF} . \\ & 111=372.672 \mathrm{pF} . \end{aligned}$	0x7	RW

AD9993

LOOP FILTER CONTROL SIGNALS REGISTER

Address: 0x02F, Reset: 0xF7, Name: LF_CTRL2
[7:6] LF_R3 (RW) loop filter coefficient
\qquad
[2:0] LF_C3 (RW)
[5:4] LF_R1 (RW) loop filter coefficient

Table 28. Bit Descriptions for LF_CTRL2

Bits	Bit Name	Description	Reset	Access
[7:6]	LF_R3	Loop filter coefficient. $\begin{aligned} & 00=4.63 \mathrm{k} \Omega . \\ & 01=2.315 \mathrm{k} \Omega . \\ & 10=1.543 \mathrm{k} \Omega . \\ & 11=1.157 \mathrm{k} \Omega \end{aligned}$	0x3	RW
[5:4]	LF_R1	Loop filter coefficient. $\begin{aligned} & 00=12.04 \mathrm{k} \Omega . \\ & 01=6.02 \mathrm{k} \Omega . \\ & 10=4.01 \mathrm{k} \Omega . \\ & 11=3.01 \mathrm{k} \Omega . \end{aligned}$	0×3	RW
[2:0]	LF_C3	Loop filter coefficient. $\begin{aligned} & 000=0.6325 \mathrm{pF} . \\ & 001=1.265 \mathrm{pF} . \\ & 010=1.8975 \mathrm{pF} . \\ & 011=2.530 \mathrm{pF} . \\ & 100=3.1625 \mathrm{pF} . \\ & 101=3.795 \mathrm{pF} . \\ & 110=4.4275 \mathrm{pF} . \\ & 111=5.06 \mathrm{pF} . \end{aligned}$	0x7	RW

LOOP FILTER CONTROL SIGNALS REGISTER

Address: 0x030, Reset: 0x00, Name: LF_CTRL3

[1] EXT_CP_SEL (RW)
 short external CP pin to charge pump output

Table 29. Bit Descriptions for LF_CTRL3

Bits	Bit Name	Description	Reset	Access
1	EXT_CP_SEL	Short external CP pin to charge pump output.	0×0	RW
0	BYP_R3	Bypass R3 in loop filter.	0×0	RW

INTEGER VALUE OF SYNTHESIZER DIVIDER REGISTER

Address: 0x031, Reset: 0x40, Name: SYNTH_INT

Table 30. Bit Descriptions for SYNTH_INT

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	SYNTH_INT	Integer part on the synthesizer divider $(\mathrm{N}) . \mathrm{N}=$ freq $(\mathrm{MHz}) / 31.25$.	0×40	RW

SYNTHESIZER CONTROL REGISTER

Address: 0x032, Reset: 0x00, Name: SYNTH_CTRL
[4] SYNTH_CAL_START (RW)

start synthesizer calibration
[0] SYNTH_CP_CAL_EN (RW)
Enable Charge pump calibration

Table 31. Bit Descriptions for SYNTH_CTRL

Bits	Bit Name	Description	Reset	Access
4	SYNTH_CAL_START	Start synthesizer calibration.	0×0	RW
0	SYNTH_CP_CAL_EN	Enable charge pump calibration.	0×0	RW

CLOCK GENERATOR CONTROL REGISTER

Address: 0x033, Reset: 0x00, Name: CLKGEN_CTRL1
[7] CLKGEN_DC_MODE (RW) Dac clock direct connect to adc
[6] CLKGEN_DC_MODE_INV (RW)

[1:0] CLKGEN_REFDIV_SEL (RW) not used
[5] CLKGEN_REFCLK_DIV1 (RW) \qquad

Table 32. Bit Descriptions for CLKGEN_CTRL1

Bits	Bit Name	Description	Reset	Access
7	CLKGEN_DC_MODE	DAC clock direct connect to ADC. $0=$ ADC clock from 1 GHz. $1=$ ADC clock from DAC.	0×0	RW
6	CLKGEN_DC_MODE_INV	Not used.	0×0	RW
5	CLKGEN_REFCLK_DIV1	$0=$ select REFCLK as PLL reference. $1=$ select REFCLK/2 as PLL reference.	RW	
4	CLKGEN_REFDIV_EN	Selects the output of the on-chip reference clock divider to the PLL.	0×0	RW
$[1: 0]$	CLKGEN_REFDIV_SEL	Sets the divider ratio for the on-chip reference clock divider.	0×0	RW

CLKGEN CONTROL REGISTER

Address: 0x034, Reset: 0x04, Name: CLKGEN_CTRL2
[7] RESERVED
[6] RESERVED
[5] RESERVED

[1:0] CLKGEN_MODE (RW)
[2] CLKGEN_ADC_MO_INV (RW) swaps cmos and diff clk buffer for adc only 0 : normal mode
[4] RESERVED
1: inverts clkgen_mode[0] for adc only
[3] CLKGEN_DAC_MO_INV (RW) swaps cmos and diff clk buffer for dac only
0 : normal mode
1: inverts clkgen_mode[0] for dac only

Table 33. Bit Descriptions for CLKGEN_CTRL2

Bits	Bit Name	Description	Reset	Access
3	CLKGEN_DAC_M0_INV	Swaps CMOS and differential clock buffer for DAC only. $0=$ normal mode. 1 = inverts CLKGEN_MODE[0] for DAC only.	0x0	RW
2	CLKGEN_ADC_M0_INV	Swaps CMOS and differential clock buffer for ADC only. 0 = normal mode. 1 = inverts CLKGEN_MODE[0] for ADC only.	0x1	RW
[1:0]	CLKGEN_MODE	Configures the IC for external or internal clock. $00=$ selects on-chip synthesizer to drive LVDS at 1 GHz , ADC at 250 MHz , and DAC at 500 MHz . 01 = same as 00 except uses differential clock buffer for DAC and ADC. $10=$ selects external clock source to drive LVDS at clock rate, ADC at clock rate divide by 4 , and DAC at clock rate divide by 2 . Minimum clock rate $=$ 200 MHz . 11 = same as 10 except uses differential clock buffer for DAC and ADC.	0x0	RW

DAC LVDS RX CONTROL REGISTER

Address: 0x035, Reset: 0x4D, Name: DAC_LVDS_CTRL
[6:4] RESERVED

[3:0] DAC_RES_CAL (RW) DAC LVDS RX termination selection

AD9993

Table 34. Bit Descriptions for DAC_LVDS_CTRL

Bits	Bit Name	Description	Reset	Access
[3:0]	DAC_RES_CAL	DAC LVDS Rx termination selection. $0001=977 \Omega$. $0010=497 \Omega$. $0011=341 \Omega$. $0100=267 \Omega$. $0101=215 \Omega$. $0110=184 \Omega$. $0111=160 \Omega$. $1000=145 \Omega$. $1001=131 \Omega$. $1010=121 \Omega$. $1011=112$. $1100=105 \Omega$. $1101=99 \Omega$. $1110=93 \Omega$. $1111=89 \Omega$.	0xD	RW

DAC LVDS CURRENT BIAS CONTROL REGISTER

Address: 0x036, Reset: 0x00, Name: DAC_LVDS_BIAS
[5:4] DAC_IAMP (RW)
 [1:0] DAC_IRCV (RW)

Table 35. Bit Descriptions for DAC_LVDS_BIAS

Bits	Bit Name	Description	Reset	Access
$[5: 4]$	DAC_IAMP	Adjust bias current for LVDS DAC receiver.	$00=$ nominal.	
		$01=25 \%$.	0×0	
		$10=50 \%$.	RW	
		$11=75 \%$.		
$[1: 0]$	DAC_IRCV	Adjust the bias current to cascade voltage for LVDS DAC receiver.	0×0	RW
		$00=$ nominal.	$01=25 \%$.	
		$10=50 \%$.		
		$11=75 \%$.		

AD9993

DAC CORES CONTROL REGISTER

Address: 0x039, Reset: 0x02, Name: DAC_CTRL
[7] DAC_TRANS (RW)
[6:4] DAC_VCM_VREF_BIT (RW)

[0] DAC_REF_EXT (RW)
Selects external DAC Reference voltage
Sets DAC Cammon Mode Level

Table 36. Bit Descriptions for DAC_CTRL

Bits	Bit Name	Description	Reset	Access
7	DAC_TRANS	DAC input latch data transfer method select. 0 = edge triggered. 1 = level triggered.	0x0	RW
[6:4]	DAC_VCM_VREF_BIT	Sets DAC common-mode level. $\begin{aligned} & 000=0.0 \mathrm{~V} . \\ & 001=0.2 \mathrm{~V} . \\ & 010=0.3 \mathrm{~V} . \\ & 011=0.4 \mathrm{~V} \\ & 100=0.5 \mathrm{~V} \\ & 101=0.6 \mathrm{~V} \\ & 110=0.7 \mathrm{~V} . \\ & 111=0.8 \mathrm{~V} . \end{aligned}$	0x0	RW
1	DAC_RSET_EN	Selects on-chip $\mathrm{R}_{\text {FSADJ_x }}$ resistor.	0x1	RW
0	DAC_REF_EXT	Selects external DAC Reference voltage. Set to 1 to use an off-chip DAC reference.	0x0	RW

DAC DATAPATH FORMAT CONTROL REGISTER

Address: 0x03A, Reset: 0x00, Name: DAC_DP_FMT

[1] DAC_BINARY (RW)
[4] RESERVED
[3] RESERVED
[2] RESERVED

Table 37. Bit Descriptions for DAC_DP_FMT

Bits	Bit Name	Description	Reset	Access
1	DAC_BINARY	Enable binary offset data format (default is twos complement). $0 \times$ twos complement. $1=$ binary offset.	RW	

DAC IQ CALIBRATION CONTROL REGISTER

Address: 0x03C, Reset: 0x04, Name: DAC_CAL_IQ_CTRL
[5] DAC_CAL_IQ_START (RW)

[0] DAC_CAL_IQ_EN (RW)
[4] DAC_CAL_IQ_RESET (RW)
[1] DAC_CAL_IQ_SEL (RW)
[2] PD_DAC_CAL_CLK (RW)

Table 38. Bit Descriptions for DAC_CAL_IQ_CTRL

Bits	Bit Name	Description	Reset	Access
5	DAC_CAL_IQ_START	Starts DAC IQ calibration.	0×0	RW
4	DAC_CAL_IQ_RESET	Resets DAC IQ calibration.	0×0	RW
2	PD_DAC_CAL_CLK	$0=$ DAC IQ calibration clock enabled. Must be 0 to run IQ calibration. $1=$ DAC IQ calibration clock disabled.	0×1	RW
1	DAC_CAL_IQ_SEL	Selects output of IQ calibration. Must be 1 to run IQ calibration.	0×0	RW
0	DAC_CAL_IQ_EN	Enables DAC I to Q calibration. Must stay high until DAC_CAL_IQ_DONE $=1$.	0×0	RW

DAC IQ CALIBRATION STATUS REGISTER

Address: 0x03D, Reset: 0x00, Name: DAC_CAL_IQ_STAT

[0] DAC_CAL_IQ_DONE (R)

Table 39. Bit Descriptions for DAC_CAL_IQ_STAT

Bits	Bit Name	Description	Reset	Access
$[7: 1]$	DAC_CAL_IQ_RD	Value of DAC IQ calibration, valid when DAC_CAL_IQ_DONE $=1$.	0×0	R
0	DAC_CAL_IQ_DONE	Indicates when DAC IQ calibration is done.	0×0	R

DAC RX FIFO STATUS 1 REGISTER

Address: 0x03F, Reset: 0x55, Name: DAC_FIFO_STS1
[7:0] RXFIFO_THERM (R)
 thermal value of FIFO usage

Table 40. Bit Descriptions for DAC_FIFO_STS1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	RXFIFO_THERM	Thermal value of FIFO usage.	0×55	R

AD9993

PRBS DETECTOR CONTROL REGISTER

Address: 0x040, Reset: 0x00, Name: DAC_PRBS_CTRL

[0] PRBS_DET_EN (RW) clear the error count of PRBS Detector (Transfer not required)

Table 41. Bit Descriptions for DAC_PRBS_CTRL

Bits	Bit Name	Description	Reset	Access
1	PRBS_DET_ERRCLR	Clear the error count of PRBS detector (transfer not required).	0×0	RW
0	PRBS_DET_EN	Enable the PRBS detector.	0×0	RW

PRBS DETECTOR ERROR COUNT 0 FOR DAC A REGISTER

Address: 0x041, Reset: 0x00, Name: DAC_A_PRBS_ERR0
[7:0] PRBS_DET_ERRCNT_A0 (R)
 Error Count of Lane 0 of DAC A

Table 42. Bit Descriptions for DAC_A_PRBS_ERR0

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A0	Error count of Lane 0 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 1 FOR DAC A REGISTER

Address: 0x042, Reset: 0x00, Name: DAC_A_PRBS_ERR1
[7:0] PRBS_DET_ERRCNT_A1 (R)
 Error Count of Lane 1 of DAC A

Table 43. Bit Descriptions for DAC_A_PRBS_ERR1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A1	Error count of Lane 1 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 2 FOR DAC A REGISTER

Address: 0x043, Reset: 0x00, Name: DAC_A_PRBS_ERR2
[7:0] PRBS_DET_ERRCNT_A2 (R)
 Error Count of Lane 2 of DAC A

Table 44. Bit Descriptions for DAC_A_PRBS_ERR2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A2	Error count of Lane 2 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 3 FOR DAC A REGISTER

Address: 0x044, Reset: 0x00, Name: DAC_A_PRBS_ERR3
[7:0] PRBS_DET_ERRCNT_A3 (R)
 Error Count of Lane 3 of DAC A

Table 45. Bit Descriptions for DAC_A_PRBS_ERR3

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A3	Error count of Lane 3 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 4 FOR DAC A REGISTER

Address: 0x045, Reset: 0x00, Name: DAC_A_PRBS_ERR4
[7:0] PRBS_DET_ERRCNT_A4 (R)

Error Count of Lane 4 of DAC A

Table 46. Bit Descriptions for DAC_A_PRBS_ERR4

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A4	Error count of Lane 4 of DAC A.	0×0	R

AD9993

PRBS DETECTOR ERROR COUNT 5 FOR DAC A REGISTER

Address: 0x046, Reset: 0x00, Name: DAC_A_PRBS_ERR5
[7:0] PRBS_DET_ERRCNT_A5 (R)
 Error Count of Lane 5 of DAC A

Table 47. Bit Descriptions for DAC_A_PRBS_ERR5

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A5	Error count of Lane 5 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 6 FOR DAC A REGISTER

Address: 0x047, Reset: 0x00, Name: DAC_A_PRBS_ERR6
[7:0] PRBS_DET_ERRCNT_A6 (R)
 Error Count of Lane 6 of DAC A

Table 48. Bit Descriptions for DAC_A_PRBS_ERR6

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_A6	Error count of Lane 6 of DAC A.	0×0	R

PRBS DETECTOR ERROR COUNT 0 FOR DAC B REGISTER

Address: 0x048, Reset: 0x00, Name: DAC_B_PRBS_ERR0
[7:0] PRBS_DET_ERRCNT_B0 (R)
 Error Count of Lane 0 of DAC B

Table 49. Bit Descriptions for DAC_B_PRBS_ERR0

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B0	Error count of Lane 0 of DAC B.	0×0	R

PRBS DETECTOR ERROR COUNT 1 FOR DAC B REGISTER

Address: 0x049, Reset: 0x00, Name: DAC_B_PRBS_ERR1
[7:0] PRBS_DET_ERRCNT_B1 (R)
 Error Count of Lane 1 of DAC B

Table 50. Bit Descriptions for DAC_B_PRBS_ERR1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B1	Error count of Lane 1 of DAC B.	0×0	R

PRBS DETECTOR ERROR COUNT 2 FOR DAC B REGISTER

Address: 0x04A, Reset: 0x00, Name: DAC_B_PRBS_ERR2
[7:0] PRBS_DET_ERRCNT_B2 (R)
 Error Count of Lane 2 of DAC B

Table 51. Bit Descriptions for DAC_B_PRBS_ERR2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B2	Error count of Lane 2 of DAC B.	0×0	R

PRBS DETECTOR ERROR COUNT 3 FOR DAC B REGISTER

Address: 0x04B, Reset: 0x00, Name: DAC_B_PRBS_ERR3
[7:0] PRBS_DET_ERRCNT_B3 (R)
 Error Count of Lane 3 of DAC B

Table 52. Bit Descriptions for DAC_B_PRBS_ERR3

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B3	Error count of Lane 3 of DAC B.	0×0	R

AD9993

PRBS DETECTOR ERROR COUNT 4 FOR DAC B REGISTER

Address: 0x04C, Reset: 0x00, Name: DAC_B_PRBS_ERR4
[7:0] PRBS_DET_ERRCNT_B4 (R)
 Error Count of Lane 4 of DAC B

Table 53. Bit Descriptions for DAC_B_PRBS_ERR4

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B4	Error count of Lane 4 of DAC B.	0×0	R

PRBS DETECTOR ERROR COUNT 5 FOR DAC B REGISTER

Address: 0x04D, Reset: 0x00, Name: DAC_B_PRBS_ERR5
[7:0] PRBS_DET_ERRCNT_B5 (R)

Error Count of Lane 5 of DAC B

Table 54. Bit Descriptions for DAC_B_PRBS_ERR5

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B5	Error count of Lane 5 of DAC B.	0×0	R

PRBS DETECTOR ERROR COUNT 6 FOR DAC B REGISTER

Address: 0x04E, Reset: 0x00, Name: DAC_B_PRBS_ERR6

Error Count of Lane 6 of DAC B

Table 55. Bit Descriptions for DAC_B_PRBS_ERR6

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRBS_DET_ERRCNT_B6	Error count of Lane 6 of DAC B.	0×0	R

BITS[7:0] OF TEMPERATURE SENSOR DATA READBACK REGISTER

Address: 0x050, Reset: 0x00, Name: TS_RD_LSB
[7:0] TEMP_SENSE_RDBK_LSB (R)

Table 56. Bit Descriptions for TS_RD_LSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	TEMP_SENSE_RDBK_LSB	Temperature sensor measurement MSB.	0×0	R

BITS[15:8] OF TEMPERATURE SENSOR DATA READBACK REGISTER

Address: 0x051, Reset: 0x00, Name: TS_RD_MSB

Table 57. Bit Descriptions for TS_RD_MSB

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	TEMP_SENSE_RDBK_MSB	Temperature sensor neasurement LSB.	0×0	R

TEMPERATURE SENSOR CONTROL SIGNALS REGISTER

Address: 0x054, Reset: 0x01, Name: TS_CTRL

[0] TEMP_SENSE_PD (RW) turn off temperature sensor

Table 58. Bit Descriptions for TS_CTRL

Bits	Bit Name	Description	Reset	Access
0	TEMP_SENSE_PD	Turn off temperature sensor.	0×1	RW

INTERRUPT PIN CONTROL REGISTER

Address: 0x055, Reset: 0x00, Name: IRQ_CTRL

[0] ALERT_PULLUP_EN (RW) Interrupt (Alarm) pin pull up enable

Table 59. Bit Descriptions for IRQ_CTRL

Bits	Bit Name	Description	Reset	Access
0	ALERT_PULLUP_EN	Interrupt (alarm) pin pull-up enable.	0×0	RW

DDS CONTROL REGISTER

Address: 0x060, Reset: 0x00, Name: DDS_CTRL
[6] DDS_1DB_DIS (RW)

[0] DDS_EN (RW) disable the -1 db attenuation on bath DDS tone outputs enable DDS Tone 1 output
[3:2] DDS_ATTEN (RW) [1] DDS_CLK_INV (RW) amplitude attenuation DDS Clock Invert Bit

Table 60. Bit Descriptions for DDS_CTRL

Bits	Bit Name	Description	Reset	Access
6	DDS_1DB_DIS	Disable the -1 db attenuation on both DDS tone outputs.	0×0	RW
$[3: 2]$	DDS_ATTEN	Amplitude attenuation.	$00=\times 1 / 1$ amplitude.	
		$01=\times 1 / 2$ amplitude.	$10=\times 1 / 4$ amplitude.	0×0
	$11=\times 1 / 8$ amplitude.	RW		
		DDS clock invert bit. 	DDS_CLK_INV normal. DDS clock not inverted.	$1=$ DDS clock inverted.

DDS TUNING WORD FOR TONE 1 REGISTER

Address: 0x061, Reset: 0x00, Name: DDS_TW1_0

Table 61. Bit Descriptions for DDS_TW1_0

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DDS_TW1_0	32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0.The default configuration is for 50 MHz when working with 50 MHz DAC clock.	0x0	RW

DDS TUNING WORD FOR TONE 1 REGISTER

Address: 0x062, Reset: 0x00, Name: DDS_TW1_1
[7:0] DDS_TW1_1 (RW)
 32-bit tuning word for Tone 1 combined by \{dds_tw1_3, dds_tw1_2, dds_tw1_1, dds_tw1_0\}. The default configuration is for 50 MHz when working with 500 MHz DAC clock.

Table 62. Bit Descriptions for DDS_TW1_1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DDS_TW1_1	32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0.The default configuration is for 50 MHz when working with 500 MHz DAC clock.	0×0	RW

AD9993

DDS TUNING WORD FOR TONE 1 REGISTER

Address: 0x063, Reset: 0xA0, Name: DDS_TW1_2

Table 63. Bit Descriptions for DDS_TW1_2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DDS_TW1_2	32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0.The default configuration is for 50 MHz when working with 500 MHz DAC clock.	0xa0	RW

DDS TUNING WORD FOR TONE 1 REGISTER

Address: 0x064, Reset: 0x19, Name: DDS_TW1_3
 32-bit tuning word for Tone 1 combined by \{dds_tw1_3, dds_tw1_2, dds_tw1_1, dds_tw1_0\}. The default configuration is for 50 MHz when working with 500 MHz DAC clock.

Table 64. Bit Descriptions for DDS_TW1_3

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	DDS_TW1_3	32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0.The default configuration is for 50 MHz when working with 500 MHz DAC clock.	0×19	RW

INTERRUPT STATUS REGISTER

Address: 0x0F0, Reset: 0x00, Name: INT

\qquad
[0] PLL_LOCKED_IRQ (RW1C)
[7] ADC_D_OVR_IRQ (RW1C) pll_lock interrupt (write-1-clear) ADC D Over Range interrupt (write-1clear) [1] PLL_UNLOCK_IRQ (RW1C)
[6] ADC_C_OVR_IRQ (RW1C) ADC C Over Range interrupt (write-1clear) pll_unlock interrupt (write-1-clear)
[5] ADC_B_OVR_IRQ (RW1C) ADC B Over Range int errupt (write-1clear)
[2] FIFO_WARN1_IRQ (RW1C) fifo_warn1 interrupt (write-1-clear)
[3] FIFO_WARN2_IRQ (RW1C) fifo_warn 2 interrupt (write-1-clear)

Table 65. Bit Descriptions for INT

Bits	Bit Name	Description	Reset	Access
7	ADC_D_OVR_IRQ	ADC D overrange interrupt (write 1 to clear).	0×0	RW1C
6	ADC_C_OVR_IRQ	ADC C overrange interrupt (write 1 to clear).	0×0	RW1C
5	ADC_B_OVR_IRQ	ADC B overrange interrupt(write 1 to clear).	0×0	RW1C
4	ADC_A_OVR_IRQ	ADC A overrange interrupt (write 1 to clear).	0×0	RW1C
3	FIFO_WARN2_IRQ	FIFO Warning 2 interrupt (write 1 to clear).	0×0	RW1C
2	FIFO_WARN1_IRQ	FIFO Warning 1 interrupt (write 1 to clear).	0×0	RW1C
1	PLL_UNLOCK_IRQ	PLL unlock interrupt (write 1 to clear).	0×0	RW1C
0	PLL_LOCKED_IRQ	PLL lock interrupt (write 1 to clear).	0×0	RW1C

INTERRUPT ENABLE REGISTER

Address: 0x0F1, Reset: 0x00, Name: INTEN
[7] ADC_D_OVR_IRQ_EN (RW) enable ADC D Over Range interrupt
[6] ADC_C_OVR_IRQ_EN (RW) enable ADC C Over Range interrupt
[5] ADC_B_OVR_IRQ_EN (RW) enable ADC B Over Range interrupt
[4] ADC_A_OVR_IRQ_EN (RW) enable ADC A Over Range interrupt

[0] PLL_LOCKED_IRQ_EN (RW) enable pll_lock interrupt
[1] PLL_UNLOCK_IRQ_EN (RW) enable pll_unlock interrupt
[2] FIFO_WARN1_IRQ_EN (RW) enable fifo_warn1 interrupt
[3] FIFO_WARN2_IRQ_EN (RW) enable fifo_warn2 interrupt

Table 66. Bit Descriptions for INTEN

Bits	Bit Name	Description	Reset	Access
7	ADC_D_OVR_IRQ_EN	Enable ADC D Overrange interrupt.	0×0	RW
6	ADC_C_OVR_IRQ_EN	Enable ADC C Overrange interrupt.	0×0	RW
5	ADC_B_OVR_IRQ_EN	Enable ADC B Overrange interrupt.	0×0	RW
4	ADC_A_OVR_IRQ_EN	Enable ADC A Overrange interrupt.	0×0	RW
3	FIFO_WARN2_IRQ_EN	Enable FIFO Warning 2 interrupt.	0×0	RW
2	FIFO_WARN1_IRQ_EN	Enable FIFO Warning 1 interrupt.	0×0	RW
1	PLL_UNLOCK_IRQ_EN	Enable PLL unlock interrupt.	0×0	RW
0	PLL_LOCKED_IRQ_EN	Enable PLL lock interrupt.	0×0	RW

INTERRUPT SOURCE STATUS REGISTER

Address: 0x0F2, Reset: 0x00, Name: INT_RAW

Table 67. Bit Descriptions for INT_RAW

Bits	Bit Name	Description	Reset	Access
7	ADC_D_OVR_RAW	ADC D overrange interrupt source.	0×0	R
6	ADC_C_OVR_RAW	ADC C overrange interrupt source.	0×0	R
5	ADC_B_OVR_RAW	ADC B overrange interrupt source.	0×0	R
4	ADC_A_OVR_RAW	ADC A overrange interrupt source.	0×0	R
3	FIFO_WARN2_RAW	FIFO Warning 2 interrupt source.	0×0	R
2	FIFO_WARN1_RAW	FIFO Warning 1 interrupt source.	0×0	R
1	PLL_UNLOCK_RAW	PLL unlock interrupt source.	0×0	R
0	PLL_LOCKED_RAW	PLL lock interrupt source.	0×0	R

GLOBAL DEVICE UPDATE REGISTER

Address: 0x0FF, Reset: 0x00, Name: DEVICE_UPDATE

[0] CHIP_REGMAP_TRANSFER (RW)

Table 68. Bit Descriptions for DEVICE_UPDATE

Bits	Bit Name	Description	Reset	Access
0	CHIP_REGMAP_TRANSFER	Register map master/slave transfer bit. Self clearing bit used to synchronize the transfer of data from the master to the slave registers. $0=$ no effect $1=$ transfer data from the master registers written by the register maps to the slave registers seen by the datapath.	$0 x 0$	RW

AD9993

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-219 WITH EXCEPTION TO PACKAGE HEIGHT.
Figure 33. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-196-9)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9993BBCZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	196 -Ball Chip Scale Package Ball Grid Array [CSP_BGA]	BC-196-9
AD9993BBCZRL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$196-$ Ball Chip Scale Package Ball Grid Array [CSP_BGA]	BC-196-9
AD9993-EBZ		Evaluation Board	

[^0]
[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

